Advertisement

Comminution and Consolidation

  • Norman P. Pinto

Abstract

Beryllium powder-making has never presented major technical or economic problems, and several methods have been available for manufacturing the desired particle size ranges in the required degrees of purity. Several milling methods are capable of disintegrating or pulverizing brittle, friable metals. Beryllium cleaves readily along a single plane, and particles made by impacting are thin, jagged, and rather flat, much smaller in thickness than in any planar direction. Such milling of coarse chip or powder produces some powder of the desired fineness, and repeated passes are needed to attain practical production rates and yields.

Keywords

Fine Particle Size Full Density Repeated Pass Attrition Mill Secondary Classifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Ardary, W. C. McWhorter, J. W. York, J. E. Perry, F. M. renco, and P. B. Petretzky, Beryllium Chip Processin, Union Carbide Nuclear Co. Repor No. Y-1328 (December 1960).Google Scholar
  2. 2.
    G. I. Turner and P. V. Livesey, Notes on the Centrifuga Shot Casting (CSC) Processing of Beryllium, private communication (April 1978).Google Scholar
  3. 3.
    P, Lowenstein (Nuclear Metals Inc.), private communication (April 1978).Google Scholar
  4. 4.
    Author unknown, Beryllium Fabricated from Quenched Particles, Dow Metal Products Co. Final Report (October 1959).Google Scholar
  5. 5.
    A. R. Kaufmann and W. C. Muller, Fine Grain Size in Beryllium by Splat-cooling, Nuclear Metals Division or Textron (October 1*4).Google Scholar
  6. 6.
    G. D. Kneip and L. R. au,u. Research on Submicron Beryllium nowu^r. National Research Corp. Report No. AFML-TR-68–47 (March 1968).Google Scholar
  7. 7.
    W. G. Liumunxmu V. Griffiths, An Electrolytic Process for Ultra-fine Beryllium, Final Report on NASA Contract No. NASW-1844 (June 1972).Google Scholar
  8. 8.
    N. P. Pinto, J. P. Denny, and G. J. London, isostatic Pressing ofBeryiium Powder, Met. Soc. ^IxxE.TMnNo. A74–50, pp. 489–511 (1974).Google Scholar
  9. 9.
    G. E. Darwin and J. H. Buddery, Beryllium, Butterworths Scientific Publications, London (1960).Google Scholar
  10. 10.
    The Metallurgy v/xer,mvm’ Chapman and Hall, London (1963)Google Scholar
  11. 11.
    Confém,crmmmotim,ole snlamsmoxmaxu Beryllium, Presses Universitaires de France, Paris (1965).Google Scholar
  12. 12.
    L. McD. Schetky and H. A. Johnson (Eds.), 8eiyliiiini ‘I’eclzno/ogy. Gordon and Breach, New York (1966).Google Scholar
  13. 13.
    Beryllium 1977, The Metals Society, London (1977).Google Scholar
  14. 14.
    J. W. Butcher, Activated Sintering of Beryllium, in: C^«fé, uc, Internationale m, la Métallurgie xe/7Öum vp. 555–564. Presses Oni,o,núuin,sdo France, Paris (/965).Google Scholar
  15. 15.
    J. W. Butcher and J. N. Lowe, Activated Sintering in Beryllium Powders by Selective Addition of Trace Elements, in: Beryllium Technology, pp. 501–522, Gordon and Breach, New York (1966).Google Scholar
  16. 16.
    N. P. Pinto and H. D. Hanes, Beryllium with Controlled Porosity, in: Beryllium 1977, pp. 31/1–31/11, the Metals Society, London (1977).Google Scholar
  17. 17.
    N. P. Pinto, Large Net Shapes by Powder Metallurgy, Int. J. Powder Metall. Powder Technol. 13 (1). 5–11 (1977).Google Scholar
  18. 18.
    P. J. Gripshover and H. D. Hanes, Advanced Beryllium Gyro-Materials Technology, 5th Space Congress, Cocoa Beach, Fla. (March 1968).Google Scholar
  19. 19.
    H. D. Hanes, P. J. Gripshover, and E. S. Hodge, Fabrication of Complex Beryllium Shapes by Gas-Pressure Compaction, in: Conférence Internationale sw la Métallurgie du Boyllium, pp. 579–590, Presses Universitaires de France, Paris (1965).Google Scholar
  20. 20.
    A. R. Austen and N. P. Pinto, Density Distribution within Isopressed Powder Parts, to be published.Google Scholar
  21. 21.
    N. P. Pinto and A. J. Martin, High Purity Beryllium Powder Components, Powder Metall: 17 (13), 70–84 (1974).Google Scholar
  22. 22.
    D. Beasley and R. E. Cooper, The Effects of Porosity on the Mechanical and Physical Properties of Beryllium, in: Beryllium 1977, pp. 24/1–24/14, The Metals Society, London (1977)Google Scholar
  23. 23.
    E. O. Speidel, Development of Porous Beryllium by the Hot-isostatic Pressing of PlasmaSpheroidized Powder, Battelle-Columbus Labs Report No. AFML-TR-71–23 (April 1971).Google Scholar
  24. 24.
    S. N: Rosenwasser, D. M. Goddard, and M. J. Hovan, Development of Porous Beryllium, McDonnell Douglas Astronautics Co. Final Report No. AF’ML-TR-71–241 (January 1972).Google Scholar
  25. 25.
    T. A. Taylor, Structural Plasma-Consolidated Beryllium Using Optimized Powders, Union Carbide Linde Division Project Report No. 47 (August 1973).Google Scholar
  26. 26.
    R. W. Boesel, Spark Sintering: An Unusual Method, Metal Prog. 99, 74–77 (1972).Google Scholar
  27. 27.
    A. F. Hayes and J. A. Yoblin, Advanced Techniques for Forging Beryllium, in: The Metallurgy of Beryllium, pp. 763–773, Chapman and Hall, London (1963).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Norman P. Pinto
    • 1
  1. 1.Kawecki Berylco Industries, Inc.ReadingUSA

Personalised recommendations