Advertisement

Machining-Induced Surface Damage

  • S. Beitscher

Abstract

Structures composed of beryllium are of increasing interest in the aerospace and nuclear industries because of the high elastic stiffness, low density, reasonable strength, and unique nuclear properties of the metal. However, there exists a reluctance to use beryllium in structural. applications because of the limited ductility and low fracture toughness of the metal. For example, beryllium displays uniaxial tensile ductilities that are less than 10% and sometimes less than 5%, depending on material grade and treatment. Compounding the problem of the inherently low ductility of the metal is the layer of damage found on the surface of beryllium after machining, which can lower the tensile ductility to perhaps as low as one-tenth the ductility of a specimen that is etched to remove the surface damage. It is to this subject of machining-induced surface damage that this chapter is devoted.

Keywords

Residual Stress Machine Surface Surface Damage Machine Damage Etched Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Reed-Hill. Physical Metallurgy Principles, pp. 408–409, Van Nostrand, New York (1964).Google Scholar
  2. 2.
    A. S. Tetelman and A. J. McEvily, Jr., Fracture of Structural Materials,p. 253, Wiley and Sons, New York (1967):Google Scholar
  3. 3.
    A. S. Argon, Transitional Modes of Fracture (Chapter 17), in: Mechanical Behavior of Materials (F. A. McClintock and A. S. Argon, eds.), p. 555, Addison-Wesley, Reading (1966).Google Scholar
  4. 4.
    R. E. Reed-Hill, Physical Metallurgy Principles, p. 533, Van Nostrand, New York (1964).Google Scholar
  5. 5.
    G. L. Tuer and A. R. Kaufman, Ductility of Beryllium as Related to Single Crystal Deformation and Fracture (Chapter VII-B), in: The Metal Be,ylGnm ( D. W. White and J. E. Burke, eds.), p. 410, American Society for Metals, Cleveland (1955).Google Scholar
  6. 6.
    G. L. Tuer and A. R. Kaufman, Ductility of Beryllium as Related to Single Crystal Deformation and Fracture (Chapter VII-B), in: The Metal Beryllium (D. W.White and J. E. Burke, eds.), p. 399, American Society for Metals, Cleveland, Ohio (1955).Google Scholar
  7. 7.
    W. V. Ward, M. L Jacobson, and C. O. Matthews, Effect of Surface Finish on Properties of Beryllium Sheet, Trans. Am. Soc. Met. 54, 84–95 (1961)Google Scholar
  8. 8.
    M. I. Jacobson, F. M. Aimeter, and E. C. Burke, Surface Damage in Beryllium, Trans. Am. Soc. Met. 55, 492–504 (1962).Google Scholar
  9. 9.
    W. Bonfield, J. A. Sartell, and C. H. Li, The Effect of Surface Condition on the Microstrain of Beryllium, Trans. Met. Soc. AIME 227, 669–673 (1963).Google Scholar
  10. 10.
    E. H. Rennhack, Influence of Machining Temperature on the Surface Damage, Residual Stress, and Texture of Hot Pressed Beryllium, Met. Trans. 5, 1095–1101 (1974).CrossRefGoogle Scholar
  11. 11.
    A. S. Argon, Transitional Modes of Fracture (Chapter 17), in: Mechanical Behavior of Materials (F. A. McClintock and A. S. Argon, eds.), p. 425, Addison-Wesley, Reading, Mass. (1966).Google Scholar
  12. 12.
    T. Nicholas, Effect of Plastic Prestrain on the Tensile Strain to Failure of Beryllium, Air Force Materials Laboratory, Wright-Patterson, AFML-TR-75–52 (June 1975).Google Scholar
  13. 13.
    B. King, Fabrication, Material Characterization and Machining Process Evaluation of S-65 Grade Hot-Pressed Beryllium, Air Force Materials Laboratory, Wright-Patterson, AFMLTR-76–88. April 1976 ).Google Scholar
  14. 14.
    A. R. Kaufmann, P. Gordon, and D. W. Lillie, The Metallurgy of Beryllium, Trans, Am. Soc. Met, 42, 785–844 (1950).Google Scholar
  15. 15.
    C. O. Matthews, M. I. Jacobson, W. C. Jahsman, and W. V. Ward, Beryllium Crack Propagation and Effects of Surface Condition, United State Air Force, Wright-Patterson, WADD Tech. Report No, 60–116 (July 1960).Google Scholar
  16. 16.
    N. A. Hill, The Effect of Various Treatments Upon the Tensile Properties of a Beryllium Sheet, in: The Metallurgy of Belyllittni,pp. 84–87, Institute of Metals Monograph and Report Series No. 28, Chapman and Hall, London (1963) (Proceedings of Conference held October 16–18, 1961, London).Google Scholar
  17. 17.
    M. I. Jacobson, F. M. Almeter, and E. C. Burke, Surface Damage in Beryllium (Section 6), in: Beryllium Research and Development Program, pp. 138–213, S. H. Geiles, Coordinator, Aeronautical Systems Division, Wright-Patterson, ASD-TDR-62–509, 1 (October 1962).Google Scholar
  18. V. M. Hovis, Machining and Finishing Fine-Grain Berylliuin, AEC R and D Report No. Y-1551, Union Carbide, Oak Ridge (October 12, 1966 ).Google Scholar
  19. 19.
    W. Taylor, C. E. R. Tristem, and J. S. White, The Manifestation and Alleviation of Machining Damage in Beryllium, Li KAEA Report No, GRO/44/79/12 (December 1967).Google Scholar
  20. 20.
    S. Beitscher, Tensile Properties of Rocky Flats Division Ingot-Sheet Beryllium from Room Temperature to 250*C, RFP-1205, Dow Chemical, Rocky Flats, Golden, Colorado (December 11, 1968 ).Google Scholar
  21. 21.
    J. E. Hanafee, Effect of Machining Damage on Tensile Properties of Beryllium, Lawrence Livermore Laboratory Informal Report No. UC1D-17248 (September 20, 1976 ).Google Scholar
  22. 22.
    S. Beitscher, Rockwell international, Atomics International, Rocky Flats, Golden, Colorado, unpublished data.Google Scholar
  23. 23.
    T. Nicholas and G. R. Atkins, Notch Tensile Strength of Advanced Structural Grades of Beryllium, Air Force Materials Laboratory, Wright-Patterson, AFML-TR-74–252 (April 1975).Google Scholar
  24. 24.
    D. V. Miley, Bending Fatigue of Ingot-Source Sheet Beryllium, RFP-1534, Dow Chemical, Rocky Flats, Golden, Colorado (October 20, 1970)Google Scholar
  25. 25.
    W. Taylor, C. E. R. Tristem, and J. S. White, Machining Damage in Beryllium, Final Report, UKAEA GRO/44/79/21 (July 1968).Google Scholar
  26. 26.
    S. Beitscher and C. R. Heiple, Rockwell International, Atomics International, Rocky Flats, Golden, Colorado, unpublished data.Google Scholar
  27. 27.
    Evaluation Test Methods for Beryllium, Materials Advisory Board, Division of Engineering, National Academy of Sciences, National Research Council, Washington, D. C., MAB-205-M, Committee on Beryllium Metallurgy, T. L. Johnston, Chairman (March 1966).Google Scholar
  28. 28.
    C. Micillo, as reported by J. A. Gurklis, Nontraditional Machining of Beryllium, Metals and Ceramics Information Center, Battelle, MCIC-72–03 (January 1972).Google Scholar
  29. 29.
    D. R. Floyd, W. W. Leslie, D. V. Miley, and R. W. Nokes, The Development of All-Beryllium Riveted Structures, RFP-2299, Rockwell International, Atomics International, Rocky Flats, Golden, Colorado (April 20, 1976 ).Google Scholar
  30. 30.
    R. J. Jackson, Rockwell International, Atomics International. Golden, Colorado, private communication.Google Scholar
  31. 31.
    J. A. Gurklis, Nontraditional Machining of Beryllium, Metals and Ceramics Information Center, Battelle, MCIC-72–03 (January 1972).Google Scholar
  32. 32.
    A. E. Brewer, Spark Machining of Beryllium. Microstructures. pp. 25–28 (August/ September 1970 ).Google Scholar
  33. 33.
    S. W. Porembka and H. D. Hanes, Surface Damage in Machined Beryllium, Defense Metals Information Center, Battelle. DMIC Memorandum 198 (January 4, (1965).Google Scholar
  34. 34.
    W. Taylor and J. S. White, Grinding Induced Machining Damage in Beryllium, J. Mat. Sci. 9, 569–575 (1974).CrossRefGoogle Scholar
  35. 35.
    E. Chandler, H. M. Lindsay, H. L. D. Pugh, and J. S. White, The Effect of Surface Finish on the Pressure—Induced Ductility of Beryllium, J. Mat. Sci. 8, 1788–1794 (1973).CrossRefGoogle Scholar
  36. 36.
    A. E. Calabra, D. L. Marts, and J. F. Capes, Simplified Metallographic Technique for Beryllium, RFP-1124, Dow Chemical, Rocky Flats, Golden, Colorado (June 12, 1968 ).Google Scholar
  37. 37.
    J. F. Capes and C. R. Heipie, A Final Polishing Technique for Revealing the Microstrain of Beryllium, Rockwell International, Atomics International, Rocky Fiats, Golden, Colorado, Internal Report No. PMRD-76–002.Google Scholar
  38. 38.
    B. T. Cross, Rockwell International, Atomics` International, Rocky Flats, Golden, Colorado, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • S. Beitscher
    • 1
  1. 1.Rocky Flats PlantRockwell InternationalGoldenUSA

Personalised recommendations