Advertisement

Solubilities of Reactive Gases in Molten Salts

  • S. N. Flengas
  • A. Block-Bolten

Abstract

It is well known that gases are soluble in molten salts at high temperatures. Solubilities are usually relatively high for the reactive gases and become less with the inert and noble gases.

Keywords

Molten Salt Eutectic Temperature Pressure Curve Alkali Metal Cation Sodium Borate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Reiss, H. L. Frisch, E. Hefland, and J. L. Lebowitz, J. Chem. Phys. 32: 119 (1960).Google Scholar
  2. 2.
    H. H. Uhlig, J. Phys. Chem. 41: 1215 (1937).Google Scholar
  3. 3.
    M. Blander, W. R. Grimes, N. V. Smith, and G. M. Watson, J. Phys. Chem. 63: 1164 (1959).Google Scholar
  4. 4.
    W. Altar, J. Chem. Phys. 5: 577 (1937).Google Scholar
  5. 5.
    R. Fürth, Proc. Cambr. Phil. Soc. 37: 252, 276, 281 (1941).Google Scholar
  6. 6.
    H. Bloom and J. O’M. Bockris, in: Modern Aspects of Electrochemistry, (J. Bockris, ed.), Vol. 2, Butterworths, London (1959).Google Scholar
  7. 7.
    R. Lorenz and W. Herz, Z. Anorg. Chem. 145: 88 (1925).Google Scholar
  8. 8.
    A. Eucken and W. Dannöhl, Z. Electrochem. 40: 814 (1934).Google Scholar
  9. 9.
    J. W. Johnson and M. A. Bredig, in Bauer’s and Porter’s chapter, Molten Salt Chemistry ( M. Blander, ed.), p. 621, Interscience, New York (1964).Google Scholar
  10. 10.
    H. A. Levy and M. D. Danforth, in: Molten Salt Chemistry ( M. Blander, ed.), Interscience, New York (1964).Google Scholar
  11. 11.
    T. Forland, “On the properties of some mixture of fused salts,” Norwegian Techn. Acad. Sci., Series 2, 1957 (4).Google Scholar
  12. 12.
    A. R. Ubbelohde, Chem. Ind. 1968: 313 (1968).Google Scholar
  13. 13.
    A. K. K. Lee and E. F. Johnson, Ind. Eng. Chem. Fund. 8: 726 (1969).Google Scholar
  14. 14.
    J. L. Copeland and W. C. Zybko, J. Phys. Chem. 69: 3631 (1965).Google Scholar
  15. 15.
    J. L. Copeland and W. C. Zybko, J. Phys. Chem. 86: 4734 (1964).Google Scholar
  16. 16.
    J. L. Copeland and W. C. Zybko, J. Phys. Chem. 70: 181 (1966).Google Scholar
  17. 17.
    J. L. Copeland and J. R. Christie, J. Phys. Chem. 73: 1205 (1969).Google Scholar
  18. 18.
    J. L. Copeland and S. Radak, J. Phys. Chem. 71: 4360 (1967).Google Scholar
  19. 19.
    J. L. Copeland and L. Seibles, J. Phys. Chem. 70: 1811 (1966).Google Scholar
  20. 20.
    J. L. Copeland and L. Seibles, J. Phys. Chem. 72: 603 (1968).Google Scholar
  21. 21.
    J. L. Copeland and S. Radak, J. Phys. Chem. 70: 3356 (1966).Google Scholar
  22. 22.
    K. Grjotheim, P. Heggelund, C. Krohn, and K. Motzfeldt, Acta Chem. Scand. 16: 689 (1962).Google Scholar
  23. 23.
    D. Bratland, K. Grjotheim, C. Krohn, and K. Motzfeldt, Acta Chem. Scand. 20: 1811 (1966).Google Scholar
  24. 24.
    D. Bratland, K. Grjotheim, C. Krohn, and K. Motzfeldt, J. Metals 19 (10): 13 (1967).Google Scholar
  25. 25.
    M. L. Pearce, J. Am. Ceram. Soc. 48: 175 (1965).Google Scholar
  26. 26.
    M. L. Pearce, J. Am. Ceram. Soc. 47: 342 (1964).Google Scholar
  27. 27.
    J. Greenberg and B. Sundheim, J. Chem. Phys. 29: 1029 (1958).Google Scholar
  28. 28.
    M. Kowalski and G. W. Harrington, Inorg. Nucl. Chem. Letters 3: 121 (1967).Google Scholar
  29. 29.
    A. Block-Bolten and S. N. Flengas, Can. J. Chem. 49: 2266 (1971).Google Scholar
  30. 30.
    R. L. Lister and S. N. Flengas, Can. J. Chem. 43: 2947 (1965).Google Scholar
  31. 31.
    I.C.I. Belgian Patent 614467 (1962).Google Scholar
  32. 32.
    W. Sundermeyer, Angew. Chem. 77: 241 (1965).Google Scholar
  33. 33.
    W. Sundermeyer, Chem. Ber. 97: 1069 (1964).Google Scholar
  34. 34.
    M. Blander, in: Molten Salt Chemistry ( M. Blander, ed.), Interscience, New York (1964).Google Scholar
  35. 35.
    R. Battino and H. L. Clever, Chem. Rev. 66: 395 (1966).Google Scholar
  36. 36.
    H. Bloom and J. W. Hastie, in: Non-aqueous Solvent Systems ( T. C. Waddington, ed.), Academic Press, New York (1965).Google Scholar
  37. 37.
    G. J. Janz Molten Salts Handbook, Academic Press, New York (1965).Google Scholar
  38. 38.
    G. Zimmerman and F. C. Strong, J. Am. Chem. Soc. 79: 2063 (1957).Google Scholar
  39. 39.
    G. A. Sachetto, G. G. Bombi, and M. Fiorani, J. Electroanalytical Chem. Interfacial Electrochem. 20: 89 (1969).Google Scholar
  40. 40.
    S. N. Flengas, Ann. N.Y. Acad. Sci. 79: 853 (1960).Google Scholar
  41. 41.
    J. H. Mui and S. N. Flengas, Can J. Chem. 40: 997 (1962).Google Scholar
  42. 42.
    R. L. Lister and S. N. Flengas, J. Electrochem. Soc. 111: 343 (1964).Google Scholar
  43. 43.
    J. E. Dutrizac and S. N. Flengas, Can. J. Chem. 45: 2314 (1967).Google Scholar
  44. 44.
    P. Pint and S. N. Flengas, unpublished results.Google Scholar
  45. 45.
    I. S. Morozov and Sun-In-Chzhu, Russ. J. Inorg. Chem. 4: 307 (1959).Google Scholar
  46. 46.
    I. S. Morozov and Sun-In-Chzhu, Russ. J. Inorg. Chem. 4: 1176 (1959).Google Scholar
  47. 47.
    L. J. Howell, R. C. Sommer, and H. H. Kellogg, Trans. AIME. 209: 193 (1957).Google Scholar
  48. 48.
    A. S. Roy, L. J. Howell, and H. H. Kellogg, Trans. AIME 212: 817 (1958).Google Scholar
  49. 49.
    G. J. Barton, R. J. Sheil, and W. R. Grimes, Phase Diagrams of Nuclear Reactor Materials, ORNL-2548.Google Scholar
  50. 50.
    B. G. Korshunov and N. W. Gregory, borg. Chem. 3: 451 (1964).Google Scholar
  51. 51.
    S. N. Flengas and T. R. Ingraham, Can. J. Chem. 38: 813 (1960).Google Scholar
  52. 52.
    R. L. Lister and S. N. Flengas, Can J. Chem. 41: 1548 (1963).Google Scholar
  53. 53.
    J. E. Dutrizac and S. N. Flengas, Advances in Extractive Metallurgy Symposium, April 1967, Inst. Mining and Metallurgy, paper 24.Google Scholar
  54. 54.
    R. L. Lister and S. N. Flengas, Can. J. Chem. 42: 1102 (1964).Google Scholar
  55. 55.
    A. A. Palko, A. D. Ryon, and D. W. Kuhn, J. Phys. Chem. 62: 319 (1958).Google Scholar
  56. 56.
    G. P. Luchinskii, Russ. J. Phys. Chem. 40: 318 (1966).Google Scholar
  57. 57.
    S. N. Flengas and P. Pint, Can. Met. Quart. 8: 167 (1969).Google Scholar
  58. 58.
    A. Block-Bolten and S. N. Flengas, Can. J. Chem. 49: 3327 (1971).Google Scholar
  59. 59.
    J. A. Wasastjerna, Soc. Sc. Fennica, Comm. Phys. Math. XIV: 3 (1948).Google Scholar
  60. 60.
    T. Forland, H. Storegraven, and S. Urnes, Z. Anorg. Allg. Chem. 279: 205 (1955).Google Scholar
  61. 61.
    H. von Wartenberg, Z. Elektrochem. 32: 330 (1926).Google Scholar
  62. 62.
    Yu. M. Ryabukhin, Russ. J. Inorg. Chem. 7: 565 (1962).Google Scholar
  63. 63.
    J. H. Shaffer, W. R. Grimes, and G. M. Watson, J. Phys. Chem. 63: 1999 (1959).Google Scholar
  64. 64.
    J. Greenberg, B. R. Sundheim, D. Gruen, J. Chem. Phys. 29: 461 (1958).Google Scholar
  65. 65.
    W. J. Burkhard and J. D. Corbett, J. Am. Chem. Soc. 79: 6361 (1957).Google Scholar
  66. 66.
    W. R. Grimes, N. V. Smith, and G. M. Watson, J. Phys. Chem. 62: 862 (1958).Google Scholar
  67. 67.
    G. M. Watson, R. B. Evans, W. R. Grimes, and N. V. Smith, J. Chem. Eng. Data 7: 285 (1962).Google Scholar
  68. 68.
    I. A. Novochatskii, O. A. Esin, and S. K. Chuchmarev, Chem. Abstr. 56: 9795 (1962).Google Scholar
  69. 69.
    E. A. Sullivan, S. Johnson, and M. D. Banus, J. Am. Chem. Soc. 77: 2023 (1955).Google Scholar
  70. 70.
    J. Dubois, Ann. Chim. (Paris) 10: 145 (1965).Google Scholar
  71. 71.
    J. P. Frame, E. Rhodes, and A. R. Ubbelohde, Trans. Faraday Soc. 57: 1075 (1961).Google Scholar
  72. 72.
    M. Schencke, G. H. J. Broers, and J. A. A. Keterlaar, J. Electrochem. Soc. 113: 404 (1966).Google Scholar
  73. 73.
    B. Cleaver and D. E. Mather, Trans. Faraday Soc. 66: 2469 (1970).Google Scholar
  74. 74.
    P. E. Field and W. J. Green, J. Phys. Chem. 75: 821 (1971).Google Scholar
  75. 75.
    W. Klemm and E. Hus, Z. Anorg. Chem. 258: 221 (1949).Google Scholar
  76. 76.
    D. R. Olander and J. L. Camahort, AIChE J. 12: 693 (1966).Google Scholar
  77. 77.
    Yu. M. Ryabukhin and N. G. Bukun, Russ. J. Inorg. Chem. (Engl. Transl.) 13: 597 (1968).Google Scholar
  78. 78.
    Yu. M. Ryabukhin, Russ. J. Phys. Chem. 39: 1563 (1965).Google Scholar
  79. 79.
    Yu. M. Ryabukhin, Russ. J. Inorg. Chem. 11: 1296 (1966).Google Scholar
  80. 80.
    S. B. Tricklebank, Abstr. No. 48, Electrochemical Soc. extended abstracts, Meeting Oct. 1969.Google Scholar
  81. 81.
    J. D. van Norman and R. J. Tivers, in: Molten Salts ( Gleb Mamantov, ed.), Marcel Dekker, New York (1969).Google Scholar
  82. 82.
    J. D. van Norman and R. J. Tivers, J. Electrochem. Soc. 118: 258 (1971).Google Scholar
  83. 83.
    P. E. Field and J. H. Shaffer, J. Phys. Chem. 71: 3218 (1967).Google Scholar
  84. 84.
    J. H. Shaffer, W. R. Grimes, and G. M. Watson, Nucl. Sci. Eng. 12: 337 (1962).Google Scholar
  85. 85.
    V. N. Devyatkin and E. A. Ukshe, Zh. Prikl. Khim 38: 1612 (1965).Google Scholar
  86. 86.
    R. A. Howald and J. E. Willard, J. Am. Chem. Soc. 77: 2046 (1955).Google Scholar
  87. 87.
    T. L. Lukmanova and Ya. E. Vilnyanskii, Chem. Abstr. 64: 13812c.Google Scholar
  88. 88.
    R. V. Winsor and G. H. Cady, J. Am. Chem. Soc. 70: 1500 (1948).Google Scholar
  89. 89.
    G. Bertozzi, Z. Naturforsch. A22: 1748 (1967).Google Scholar
  90. 90.
    S. Bretsznajder, Roczniki Chemii 10: 729 (1930).Google Scholar
  91. 91.
    A. G. Keenan, J. Phys. Chem. 61: 780 (1957).Google Scholar
  92. 92.
    J. B. Raynor, Z. Elektrochemie 67: 360 (1963).Google Scholar
  93. 93.
    F. R. Duke and A. S. Doan, Iowa State College J. Sci. 32: 451 (1958).Google Scholar
  94. 94.
    D. L. Mariele and D. N. Hume, J. Electrochem. Soc. 107: 354 (1960).Google Scholar
  95. 95.
    H. A. Laitinen, W. S. Ferguson, and R. A. Osteryoung, J. Electrochem. Soc. 104: 516 (1957).Google Scholar
  96. 96.
    S. I. Rempel, Dokl. Akad. Nauk. SSSR 74: 331 (1950).Google Scholar
  97. 97.
    S. Pizzini, R. Morlotti, and E. Roemer, Nucl. Sci. Abstr. 20: 43 (1966).Google Scholar
  98. 98.
    G. Mamantov, in: “Molten Salts,” ( G. Mamantov, ed.), p. 540, Marcel Dekker, New York (1969).Google Scholar
  99. 99.
    A. N. Campbell and D. F. Williams, Can. J. Chem. 42: 1778 (1964).Google Scholar
  100. 100.
    A. N. Campbell and D. F. Williams, Can. J. Chem. 42: 1984 (1964).Google Scholar
  101. 101.
    T. I. Crowell and P. Hillery, J. Org. Chem. 30: 1339 (1965).Google Scholar
  102. 102.
    A. R. Glueck and C. N. Kenney, Chem. Eng. Sci. 23: 1257 (1968).Google Scholar
  103. 103.
    H. Flood and O. J. Kleppa, J. Am. Chem. Soc. 69: 998 (1947).Google Scholar
  104. 104.
    D. Bratland and C. Krohn, Acta Chem. Scancl. 23: 1839 (1969).Google Scholar
  105. 105.
    D. Bratland, K. Grjotheim, and C. Krohn, Unpublished results, private communication by H. Dye.Google Scholar
  106. 106.
    J. Mahieux, Compt. Rend. 240: 2521 (1955).Google Scholar
  107. 107.
    E. H. Baker, J. Chem. Soc. 1962: 464.Google Scholar
  108. 108.
    E. H. Baker, J. Chem. Soc. 1962: 2525.Google Scholar
  109. 109.
    E. H. Baker, J. Chem. Soc. 1963: 339.Google Scholar
  110. 110.
    E. H. Baker, J. Chem. Soc. 1963: 699.Google Scholar
  111. 111.
    S. Allulli, J. Phys. Chem. 73: 1084, (1969).Google Scholar
  112. 112.
    I. S. Morozov and B. G. Korshunov, Russ. J. Inorg. Chem. 1: 145 (1956).Google Scholar
  113. 113.
    P. W. Seabaugh and J. D. Corbelt, Inorg. Chem. 4: 176 (1965).Google Scholar
  114. 114.
    H. Scholze and H. O. Mulfinger, Angew. Cheni. 74: 75 (1962).Google Scholar
  115. 115.
    H. Scholze, H. O. Mulfinger, and H. Franz, Chem. Abstr. 58: 326e.Google Scholar
  116. 116.
    R. Kh. Kumarev and S. A. Amirova, Zh. Neorg. Khim. 13: 2258 (1968).Google Scholar
  117. 117.
    M. V. Smirnov and V. S. Maksimov, Elektrokhimiya 1: 727 (1965).Google Scholar
  118. 118.
    M. V. Smirnov, V. S. Maksimov, and A. P. Khaimenov, Zit. Neorg. Khim. 11: 1765 (1966).Google Scholar
  119. 119.
    V. S. Maksimov and M. V. Smirnov, Zh. Prikl. Khim. 39: 931 (1966).Google Scholar
  120. 120.
    M. V. Smirnov and V. S. Maksimov, Tr. Inst. Elektrokhitn. Akad. Nauk SSSR Uralsk. Fil. 8: 35 (1966).Google Scholar
  121. 121.
    V. S. Maksimov and M. V. Smirnov, Tr. Inst. Elektrokhitn. Akad. Nauk SSSR Uralsk. Fil. 9: 41 (1966).Google Scholar
  122. 122.
    M. V. Smirnov and V. S. Maksimov, Tr. Inst. Elektrokhim. Akad. Nauk SSSR Uralsk. Fil. 10: 49 (1967).Google Scholar
  123. 123.
    I. S. Morozov and D. A. Toptygin, Russ. J. Inorg. Chem. 5: 42 (1960).Google Scholar
  124. 124.
    P. Pint and S. N. Flengas, Can. J. Chem. 49: 2285 (1971).Google Scholar
  125. 125.
    W. Sundermeyer, Chem. Ber. 97: 1069 (1964).Google Scholar
  126. 126.
    W. Sundermeyer, German Patent Appl. 1, 080, 077, 1957.Google Scholar
  127. 127.
    B. V. Nekrasov, General Chemistry, 9th ed, Chemizdat, Moscow, 1952.Google Scholar
  128. 128.
    J. H. Reilly, U. S. Patent 2140550 (1938).Google Scholar
  129. 129.
    O. Glemser and K. Kleine-Weischede, Liebigs Ann. Chem. 17: 659 (1962).Google Scholar
  130. 130.
    C. A. Vanderwerf, Acids, Bases,…, Reinhold, New York (1961).Google Scholar
  131. 131.
    S. N. Flengas and A. S. Kucharski, Can. J. Chem. 49: 3971 (1971).Google Scholar
  132. 132.
    F. R. Duke and E. Shute, J. Phys. Chem. 66: 2114 (1962).Google Scholar
  133. 133.
    F. R. Duke, Reaction Kinetics in Fused Salts (B. R. Sundheim, ed.), McGraw-Hill, New York (1964).Google Scholar
  134. 134.
    M. Fild, W. Sundermeyer, and O. Glemser, Chem. Ber. 97: 620 (1964).Google Scholar
  135. 135.
    L. M. Litz, German Patent Appl. 1096884 (1961).Google Scholar
  136. 136.
    J. Hille and W. Dürrwachter, Angew. Chem. 72: 850 (1960).Google Scholar
  137. 137.
    M. Baccaredda and F. G. Nencetti, Chim. e. Ind. 42: 1084 (1960).Google Scholar
  138. 138.
    E. Gorin, U. S. Patent 2, 418, 931 (1947).Google Scholar
  139. 139.
    C. M. Fontana, U. S. Patent 2, 447, 323 (1948).Google Scholar
  140. 140.
    W. Sundermeyer and W. Meise, Z. Anorg. Allg. Chem. 317: 334 (1962).Google Scholar
  141. 141.
    E. Gorin and C. B. Miles, U. S. Patent 2, 444, 289 (1948).Google Scholar
  142. 142.
    R. S. Hanner and S. Swann, Ind. Eng. Chem. 41: 325 (1949).Google Scholar
  143. 143.
    E. Gorin, U. S. Patent 2, 498, 546 (1950).Google Scholar
  144. 144.
    W. Sundermeyer, Z. Anorg. Allg. Chem. 314: 100 (1962).Google Scholar
  145. H. L. Roberts, Brit. Patent 874099 (1961).Google Scholar
  146. 146.
    R. E. Feathers and R. H. Rogerson, U. S. Patent 2, 914, 575 (1956).Google Scholar
  147. 147.
    J. H. Reilly, U. S. Patents 2,140,548 and 2, 140, 549 (1938).Google Scholar
  148. 148.
    D. C. Coldiron, L. F. Albright, and L. G. Alexander, Ind. Eng. Chem. 50: 991 (1958).Google Scholar
  149. 149.
    L. F. Grantham, L. A. Heredy, D. E. McKenzie, R. D. Oldenkamp, and S. J. Yosim, Report on contract # PH 86–67–128, U. S. Public Health Service, Dept. of Health, Education, and Welfare.Google Scholar
  150. 150.
    W. Sundermeyer and O. Glemser, Angew. Chem. 70: 625 (1958).Google Scholar
  151. 151.
    W. Sundermeyer and O. Glemser, Angew. Chem. 70: 628 (1958).Google Scholar
  152. 152.
    W. Sundermeyer, Z. Anorg. Allg. Chem. 313: 290 (1961).Google Scholar
  153. 153.
    J. H. Reilly, U. S. Patent 2, 140, 547 (1938).Google Scholar
  154. 154.
    A. R. Glueck and C. N. Kenney, Chem. Eng. Sci. 23: 1257 (1968).Google Scholar
  155. 155.
    N. E. Norman and H. F. Johnstone, Ind. Eng. Chem. 43: 1553 (1951).Google Scholar
  156. 156.
    W. Sundermeyer, O. Glemser, and K. Kleine-Weischede, Chem. Ber. 95: 1829 (1962).Google Scholar
  157. 157.
    Holzverkohlungsindustrie A. G., German Patent 393550 (1924).Google Scholar
  158. 158.
    Uddeholms, A. B. Belgian Patent 616504 (1962).Google Scholar
  159. 159.
    H. Lux, R. Kuhn, and T. Niedermaier, Z. Anorg. Allg. Chem. 298: 285 (1959).Google Scholar
  160. 160.
    H. Lux, E. Renauer, and E. Betz, Z. Anorg. Allg. Chem. 310: 305 (1961).Google Scholar
  161. 161.
    H. Lux and T. Niedermaier, Z. Anorg. Allg. Chem. 285: 246 (1956).Google Scholar
  162. 162.
    J. H. Reilly, U. S. Patent 2, 140, 551 (1938).Google Scholar
  163. 163.
    W. Sundermeyer and O. Glemser, Angew. Chem. 70: 629 (1958).Google Scholar
  164. 164.
    A. Stock and C. Somieski, Ber, deutsch. Chem. Ges. 52: 695 (1919).Google Scholar
  165. 165.
    N. A. Krasilnikova, M. V. Smirnov, and I. H. Ozeryanaya, Tr. Inst. Elektrokhim. Akad. Nauk SSSR Uralsk. Fil. 12: 50 (1969).Google Scholar
  166. 166.
    N. A. Krasilnikova, M. V. Smirnov, and I. H. Ozeryanaya, Tr. Inst. Elektrokhim. Akad. Nauk SSSR Uralsk. Fil. 14: 3 (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • S. N. Flengas
    • 1
  • A. Block-Bolten
    • 1
  1. 1.Department of Metallurgy and Materials ScienceUniversity of TorontoTorontoCanada

Personalised recommendations