Mammalian X-Chromosome Inactivation

  • Stanley M. Gartler
  • Robert J. Andina
Part of the Advances in Human Genetics book series (AHUG, volume 7)


The initial step in mammalian sexual differentiation is based on the XX: XY chromosomal system. In order to function properly, this chromosomal mechanism must be regulated to eliminate the aneuploidy effects in somatic tissues and still insure normal sexual differentiation and development. In mammalian forms, an X-chromosome regulatory mechanism has evolved to carry out these developmental functions. The two X chromosomes in the female germ line remain active through most of their ontogeny to bring about normal ovarian function; a single X chromosome is active in the female soma so as to eliminate gross aneuploidy effects between males and females; and in the male germ line the single X chromosome is inactivated or eliminated at an apparently critical stage in spermiogenesis. This is the broad outline of mammalian X-chromosome regulation. The specifics vary in different forms: random X-chromosome inactivation in most eutherian mammals, a possible nonrandom mechanism in marsupials, and a chromosomal elimination system in the creeping vole, Micron’s oregoni.


Germ Cell Hair Follicle Dosage Compensation Amelogenesis Imperfecta Hypohidrotic Ectodermal Dysplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andina, R., 1975, A study of X-chromosome inactivation during oogenesis in the mouse, Ph. D. Thesis, University of Washington, Seattle, Washington.Google Scholar
  2. 2.
    Austin, C. R., 1966. Sex chromatin in embryonic and fetal tissues, in “The Sex Chromatin” (D. C. Moore, ed.), p. 241, W. B. Saunders, Philadelphia.Google Scholar
  3. 3.
    Barr, M. L., and Bertram, E. G., 1949, A morphological distinction between neurones of the male and female, and the behavior of the nucleolar satellite during accelerated nucleoprotein synthesis, Nature 163: 676.PubMedGoogle Scholar
  4. 4.
    Benditt, E. P., and Benditt, J. M., 1973, Evidence for a monoclonal origin of human atherosclerotic plaques, Proc. Nad. Acad. Sci. U.S.A. 70: 1753.Google Scholar
  5. 5.
    Beutler, E., Yeh, M., and Fairbanks, V. F., 1962, The normal human female as a mosaic of X-chromosome activity: studies using the gene for glucose-6-phosphate dehydrogenase deficiency as a marker, Proc. Natl. Acad. Sci. U.S.A. 48: 9.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Boué, J. G., and Boué, A., 1974, Chromosome abnormalities and abortion, in “Physiology and Genetics of Reproduction” (F. Fuchs and E. M. Coutinho, eds.), Plenum Press, New York.Google Scholar
  7. 7.
    Brinster, R. L., 1970, Glucose-6-phsophate dehydrogenase activity in the early rabbit and mouse embryo, Biochem. Genet. 4: 669.PubMedGoogle Scholar
  8. 8.
    Brown, S. W., 1966, Heterochromatin, Science 151: 417.PubMedGoogle Scholar
  9. 9.
    Brown, S. W., and Chandra, H. S., 1973, Inactivation system of the mammalian X-chromosome, Proc. Natl. Acad. Sci. U.S.A. 70: 195.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Carr, D. H., 1965, Chromosome studies in spontaneous abortions. Obstet. Gvnecol. 26: 308.Google Scholar
  11. 11.
    Carr, D. H., Haggar, R. A., and Hart, A. G., 1968, Germ cells in the ovaries of XO female infants, Am. J. Clin. Pathol. 49: 521.PubMedGoogle Scholar
  12. 12.
    Cattanach, B. M., 1963, The inactive-X hypothesis and position effects in the mouse (Abstract), Genetics 48: 884.Google Scholar
  13. 13.
    Cattanach, B. M., 1970, Controlling elements in the mouse X-chromosome. IIl: Influence upon both parts of an X divided by rearrangement, Genet. Res. 16: 293.PubMedGoogle Scholar
  14. 14.
    Cattanach, B. M., 1974, Position effect variegation in the mouse, Genet. Res. 23: 291.PubMedGoogle Scholar
  15. 15.
    Cattanach, B. M., 1975, Control of chromosome inactivation, Annn. Rey. Genet. 9: 1.Google Scholar
  16. 16.
    Cattanach, B. M., and Isaacson, J. H., 1967, Controlling elements in the mouse X-chromosome, Genetics 57: 331.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Cattanach, B. M., Perez, J. N., and Pollard, C. E., 1970, Controlling elements in the mouse X-chromosome. II: Location in the linkage map, Genet. Res. 15: 183.PubMedGoogle Scholar
  18. 18.
    Cattanach, B. M., Pollard, C. E., and Hawkes, S. G., 1971, Sex-reversed mice: XX and XO males, Cytogenetics 10: 318.PubMedGoogle Scholar
  19. 19.
    Cattanach, B. M., and Williams, C. E., 1972, Evidence of non-random X-chromosome activity in the mouse, Genet. Res. 19: 229.PubMedGoogle Scholar
  20. 20.
    Chandra, H. S., and Brown, S. W., 1975, Chromosome inprinting and the mammalian X-chromosome, Nature 253:165.Google Scholar
  21. 21.
    Chapman, V. M., and Shows, T. B., 1976, Somatic cell genetic evidence for X-chromosome linkage of three enzymes in the mouse, Nature 259: 665.PubMedGoogle Scholar
  22. 22.
    Clark, J. M., and Eddy, E. M., 1975, Fine structure observations on the origin and associations of primordial germ cells of the mouse, Dec. Biol. 47: 136.Google Scholar
  23. 23.
    Comings, D. E., 1966, Uridine-5-H3 radioautography of the human sex chromatin body, J. Cell Biol. 28: 437.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Comings, D. E., 1967, The duration of replication of the inactive X-chromosome in humans based on the persistence of the heterochromatic sex chromatin body during DNA synthesis, Cytogenetics 6: 20.PubMedGoogle Scholar
  25. 25.
    Comings, D. E., 1968, The rationale for an ordered arrangement of chromatin in the interphase nucleus, Am. J. Hum. Genet. 20: 440.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Cook, P. R., 1973, Hypothesis on differentiation and the inheritance of gene superstructure, Nature 245: 23.PubMedGoogle Scholar
  27. 27.
    Cooper, D. W., 1971, A directed genetic change model for X-chromosome inactivation in eutherian mammals, Nature 230: 292.PubMedGoogle Scholar
  28. 28.
    Cooper, D. W., Johnston, P. G., Murtagh, C. E., and Vandenberg, J. L., 1975, Sex chromosome evolution and activity in mammals, particularly kangaroo, in “The Eukaryote Chromosome” (W. J. Peacock and R. D. Brock. eds. ), Australian Natl. University Press.Google Scholar
  29. 29.
    Cooper, D. W., Johnston, P. G., Murtagh, C. E., Sharman, G. B., Vandenberg, J. L., and Poole, W. E., Sex-linked isozymes and sex chromosome evolution and inactivation in Australian marsupials and monotremes, Proc. 3rd Int. Lsoenzvme Conf.,Yale, in press.Google Scholar
  30. 30.
    Crump, I. A., and Danks, D. M., 1971, Hypohidrotic ectodermal dysplasia, J. Pediatr. 78: 466.PubMedGoogle Scholar
  31. 31.
    Curtis, D. J., 1969, Sex chromatin frequency in buccal mucosal tissue: the normal female population, Cytogenetics 8: 20.PubMedGoogle Scholar
  32. 32.
    Danes, B. S., and Beam, A. G., 1967, Hurler’s syndrome: a genetic study of clones in cell culture with particular reference to the Lyon hypothesis, J. Exp. Med. 126: 509.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Davidson, R. G., Nitowsky, H. M., and Childs, B., 1963, Demonstration of two populations of cells in the human female heterozygous for glucose-6-phosphate dehydrogenase variants, Proc. Natl. Acad. Sci. U.S.A. 50: 481.PubMedCentralPubMedGoogle Scholar
  34. 34.
    De Mars, R., 1967, The single-active X: functional differentiation at the chromosome level, Natl. Cancer Inst. Monogr. 26: 327.Google Scholar
  35. 35.
    Deol, M. S., and Whitten, N. K., 1972, X-chromosome inactivation: does it occur at the same time in all cells of the embryo? Nature (London) New Biol. 240: 277.Google Scholar
  36. 36.
    Drews, U., Blecher, S. R., Owen, D. A., and Ohno, S., 1974, Genetically directed prefential X-inactivation seen in mice, Cell 1: 3.Google Scholar
  37. 37.
    Ducos, J., Marty, Y., Sanger, R., and Race, R. R., 1971, Xg and X-chromosome inactivation, Lancet ii, 219.Google Scholar
  38. 38.
    Eicher, E. M., 1970, X-autosome translocations in the mouse: total inactivation versus partial inactivation of the X-chromosome, Adv. Genet. 15: 175.PubMedGoogle Scholar
  39. 39.
    Eicher, E. M., Nesbitt, M. N., and Francke, U., 1972. Cytological identification of the chromosomes involved in Searle’s translocation and the location of the centromere in the X chromosome of the mouse, Genetics 71: 643.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Epstein, C. J., 1969, Mammalian oocytes: X-chromosome activity, Science 163: 1078.PubMedGoogle Scholar
  41. 41.
    Epstein, C. J., 1972, Expression of the mammalian X-chromosome before and after fertilization, Science 175: 1467.PubMedGoogle Scholar
  42. 42.
    Falconer, D. S., and Isaacson, J. H., 1972, Sex-linked variegation modified by selection in brindled mice, Genet. Res. 20: 291.PubMedGoogle Scholar
  43. 43.
    Farber, R. A., and Liskay, R. M., 1974, Karyotypic analysis of a near-diploid established mouse cell line, Cytogenet. Cell Genet. 13: 384.PubMedGoogle Scholar
  44. 44.
    Fellous, M., Bengtsson, B. B., Finnegan, D., and Bodmer, W. F., 1974, Expression of the Xga antigen on cells in culture, and its segregation in somatic cell hybrids, Ann. Hum. Genet. 37: 421.PubMedGoogle Scholar
  45. 45.
    Fellous, M., Pearson, P. L., van der Linden, A. G. T. M., Miera Kan, P., and Hagemeyer, A., 1975, Mapping the Xga red blood cell antigen in human-Chinese hamster cell hybrids—the Xg locus is possibly located on the short arm of the X-chromosome, Cell Cytogenetics 14: 293.Google Scholar
  46. 46.
    Ferguson-Smith, M. A., 1959, The prepubertal testicular lesion in chromatin-positive Klinefelter’s syndrome (primary microochidism) as seen in mentally handicapped children, Lancet i:219.Google Scholar
  47. 47.
    Ferguson-Smith, M. A., 1965, Karyotype–phenotype correlations in gonadal dysgenesis and their bearing on the pathogenesis of malformations, J. Med. Genet. 2: 142.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Ferguson-Smith, M. A., 1966, Sex-chromatin, Klinefelter’s syndrome and mental deficiency, in “The Sex Chromatin” (K. L. Moore, ed.), p. 277, W. B. Saunders, Philadelphia.Google Scholar
  49. 49.
    Fialkow, P. J., 1970, X-chromosome inactivation and the Xg locus, Am. J. Hum. Genet. 22: 460.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Fialkow, P. J., 1973, Primordial cell pool size and lineage relationships of five human cell types, Ann. Hum. Genet. 37: 39.PubMedGoogle Scholar
  51. 51.
    Fialkow, P. J., Gartler, S. M., and Yoshida, A., 1967, Clonal origin of chronic myelocytic leukemia in man, Proc. Natl. Acad. Sci. U.S.A. 58: 1468.Google Scholar
  52. 52.
    Fialkow, P. J., Lisker, R., Giblett, E. R., and Zavala, C., 1970, Xg locus: failure to detect inactivation in females with chronic myelocytic leukemia, Nature 226: 367.PubMedGoogle Scholar
  53. 53.
    Frias, J. L., and Smith, D. W., 1968, Diminished sweat pores in hypohidrotic ectodermal dysplasia: a new method for assessment, J. Pediatr. 72: 606.PubMedGoogle Scholar
  54. 54.
    Gardner, R. L., and Lyon, M. F., 1971, X-chromosome inactivation studied by injection of a single cell into the mouse blastocyst, Nature 231: 385.PubMedGoogle Scholar
  55. 55.
    Gartler, S. M., 1974, Utilization of mosaic systems in the study of the origin and progression of tumors, in “Chromosomes and Cancer” (J. German, ed.), p. 314, Wiley–Interscience, New York.Google Scholar
  56. 56.
    Gartler, S. M., X-chromosome inactivation and selection in somatic cells, Federation Proc.,in press.Google Scholar
  57. 57.
    Gartler, S. M., Andina, R., and Gant, N., 1975, Ontogeny of X-chromosome inactivation in the female germ line, Exp. Cell Res. 91: 454.PubMedGoogle Scholar
  58. 58.
    Gartler, S. M., and Burt, B., 1964, Replication pattern of bovine sex chromosomes in cell culture, Cytogenetics 3: 135.PubMedGoogle Scholar
  59. 59.
    Gartler, S. M., and Burt, B., 1965, Chromosome replication pattern in an established bovine cell line, Cytogenetics 4: 81.PubMedGoogle Scholar
  60. 60.
    Gartler, S. M., Chen, S., Fialkow, P. J., and Giblett, E. R., 1972, X-chromosome inactivation in cells from an individual heterozygous for two X-linked genes, Nature (London) New Biol. 236: 149.Google Scholar
  61. 61.
    Gartler, S. M., Gandini, E., Angioni, G., and Argiolas, N., 1969, Glucose-6phosphate dehydrogenase mosaicism: utilization as a tracer in the study of the development of hair root cells, Ann. Hum. Genet. 33: 171.PubMedGoogle Scholar
  62. 62.
    Gartler, S. M., Gandini, E., Hutchison, H. T., Campbell, B., and Zechhi, G., 1971, Glucose-6-phosphate dehydrogenase mosaicism: Utilization in the study of hair follicle variegation, Ann. Hum. Genet. 35:1.Google Scholar
  63. 63.
    Gartler, S. M., and Linder, D., 1964, Selection in mammalian mosaic cell populations, Cold Spring Harbor Symp. Quant. Biol. 29: 253.PubMedGoogle Scholar
  64. 64.
    Gartler, S. M., Liskay, R. M., Campbell, B. K., Sparkes, R., and Gant, N., 1972, Evidence for two functional X-chromosomes in human oocytes, Cell Differ. 1: 215.PubMedGoogle Scholar
  65. 65.
    Gartler, S. M., Liskay, R. M., and Gant, 1973, Two functional X-chromosomes in human foetal oocytes, Exp. Cell Res. 82: 464.PubMedGoogle Scholar
  66. 66.
    Gartler, S. M., Liskay, R. M., and Hauschka, S. D., Unpublished observations.Google Scholar
  67. 67.
    Gartler, S. M., and Nesbitt, M. N., 1970, Sex chromosome markers as indication in embryonic development, Adv. Biosci. 6: 225.Google Scholar
  68. 68.
    Gartler, S. M., Scott, R. C., Goldstein, J. L., Campbell, B.. and Sparkes, R., 1971, Lesch—Nyhan syndrome: rapid detection of heterozygotes by use of hair follicles, Science 172: 572.PubMedGoogle Scholar
  69. 69.
    German, J., 1962, DNA synthesis in human chromosomes, Trans. N.Y. Acad. Sci. 24: 395.Google Scholar
  70. 70.
    Goldstein, J. L., Marks, J. F., and Gartler, S. M., 1971, Expression of two X-linked genes in human hair follicles of double heterozygotes, Proc. Natl. Acad. Sci. U.S.A. 68: 1425.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Grumbach, M. M., Morishima, A., and Taylor, J. H., 1963, Human sex chromosome abnormalities in relation to DNA replication and heterochromatinization, Proc. Natl. Acad. Sci. U.S.A. 49: 581.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Hamerton, J. L., 1968, Significance of sex chromosome derived heterochromatin in mammals. Nature 219: 910.PubMedGoogle Scholar
  73. 73.
    Hill, R. N., and Yunis, J. J., 1967, Mammalian X-chromosomes: change in pattern of DNA replication during embryogenesis, Science 155: 1120.PubMedGoogle Scholar
  74. 74.
    Holliday, R., and Pugh, J. E., 1975, DNA modification mechanisms and gene activity during development, Science 187: 226.PubMedGoogle Scholar
  75. 75.
    Hoppe, P. C., and Whitten, W. K., 1972, Does X-chromosome inactivation occur during mitosis of first cleavage? Nature 239: 520.PubMedGoogle Scholar
  76. 76.
    Illmensee, K., and Mahowald, A. P., 1974, Transplanatation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg, Proc. Natl. Acad. Sci. U.S.A. 71: 1016.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Issa, M., Blank, C. E., and Atherton, G. W., 1969, The temporal appearance of sex chromatin and of the late replicating X-chromosome in blastocysts of the domestic rabbit, Cytogenetics 8: 219.PubMedGoogle Scholar
  78. 78.
    Kahan, B., and De Mars, R., 1975, Localized derepression on the human inactive X-chromosome in mouse—human cell hybrid, Proc. Natl. Acad. Sci. U.S.A. 72: 1510.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Kerr, C. B., Wells, R. S., and Cooper, K. E., 1966, Gene effect in carriers of anhidrotic ectodermal dysplasia, J. Med. Genet. 3: 169.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Kinsey, J. D., 1967, X-chromosome replication in early rabbit embryos, Genetics 55: 337.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Klinger, H. P., Davis, J., Goldhuber, P., and Ditta, T., 1968, Factors influencing mammalian X-chromosome condensation and sex chromatin formation. I. The effect of in vitro cell density on sex chromatin frequency, Cytogenetics 7: 39.Google Scholar
  82. 82.
    Klinger, H. P., Lindsten, J., Fraccaro, M., Barrai, I., and Dolinar, Z. J., 1965, DNA content and area of sex chromatin in subjects with structural and numerical aberrations of the X-chromosome, Cytogenetics 4: 96.PubMedGoogle Scholar
  83. 83.
    Klinger, H. P., Schwarzacher, H. G., and Weiss, J., 1967, DNA content and size of sex chromatin-positive female nuclei during the cell cycle, Cytogenetics 6: 1.PubMedGoogle Scholar
  84. 84.
    Kozak, L. P., McLean, G. K., and Eicher, E. M., 1974, X linkage of phosphoglycerate kinase in the mouse, Biochem. Genet. 11: 41.PubMedGoogle Scholar
  85. 85.
    Kozak, L. P., and Quinn, P. J., 1975, Evidence for dosage compensation of an X-linked gene in the 6-day embryo of the mouse, Der. Biol. 45: 65.Google Scholar
  86. 86.
    Lehninger, A. L., 1970, “Biochemistry,” p. 357, Worth, New York.Google Scholar
  87. 87.
    Leisti, J. T., Kaback, M. M., and Rimoin, D. L., 1975, Human X-autosome translocations: differential inactivation of the X-chromosome in a kindred with an X9 translocation, Am. J. Hum. Genet. 27: 441.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Lifschytz, E., and Lindsley, D. L., 1972, The role of X-chromosome inactivation during spermatogenesis, Proc. Natl. Acad. Sci. U.S.A. 69: 182.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Lifschytz, E., and Lindsley, D. L., 1974, Sex chromosome activation during spermatogenesis, Genetics 78: 323.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Linder, D., and Gartler, S. M., 1965, Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas, Science 150: 67.PubMedGoogle Scholar
  91. 91.
    Linder, D., and Gartler, S. M., 1965, Distribution of glucose-6-phosphate dehydrogenase electrophoretic variants in different tissues of heterozygotes, Am. J. Horn. Genet. 17: 212.Google Scholar
  92. 92.
    Lindsley, D. L., Sandler, L., Baker, B. S., Carpenter, A. T. C., Denell, R. E., Hall, J. C., Jacobs, P. A., Miklos, G. L. G., Davis, B. K., Gethmann, R. C., Hardy, R. W., Hessler, A., Miller, S. M., Nozawa, H., Parry, D. M., and Gould-Somero, M., 1972, Segmental aneuploidy and the genetic gross structure of the Drosphila genome, Genetics 71: 157.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Lucchesi, J. C., 1973, Dosage compensation in Drosophila, Anno. Rev. Genet. 7: 225.Google Scholar
  94. 94.
    Lyon, M. F., 1961, Gene action in the X-chromosome of the mouse (Mus musculus L), Nature 190: 372.PubMedGoogle Scholar
  95. 95.
    Lyon, M. F., 1962, Sex-chromatin and gene action in the mammalian X-chromosome, Am. J. Hum. Genet. 14: 135.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Lyon, M. F., 1963, Attempts to test the inactive-X theory of dosage compensation in mammals, Genet. Res. 4: 93.Google Scholar
  97. 97.
    Lyon, M. F., 1970. Genetic activity of sex chromosomes in somatic cells of mammals, Philos. Trans. R. Soc. Land. Ser. B 259: 41.Google Scholar
  98. 98.
    Lyon, M. F., 1972, X-chromosome inactivation and developmental patterns in mammals, Biol. Rev. 47:1.Google Scholar
  99. 99.
    Lyon, M. F., 1974, Evolution of X-chromosome inactivation in mammals, Nature 250: 651.PubMedGoogle Scholar
  100. 100.
    Lyon, M. F., 1974, Mechanisms and evolutionary origins of variable X-chromosome activity in mammals, Proc. R. Soc. Load. Ser. B 187: 243.Google Scholar
  101. 101.
    Lyon, M. F., 1974, Sex chromosome activity in germ cells, in “Physiology and Genetics of Reproduction” (E. M. Coutinho and F. Fuchs, eds.), Part A, p. 63, Plenum Press, New York.Google Scholar
  102. 102.
    Lyon, M. F., and Glenister, P. H., 1974, Evidence from Tfìn/0 that androgen is inessential for reproduction in female mice, Nature 247: 366.PubMedGoogle Scholar
  103. 103.
    Lyon, M. F., and Hawker, S. G., 1973, Reproductive lifespan in irradiated and unirradiated chromosomally XO mice, Genet. Res. 21: 185.PubMedGoogle Scholar
  104. 104.
    McLaren, A., 1972, Germ cell differentiation in artificial chimaeras of mice, in The Genetics of the Spermatozoan“ (R. A. Beatty and S. Glueksohn-Waelsch, eds.), p. 313, Edinburgh, New York.Google Scholar
  105. 105.
    McLaren, A., Chandley, A. C., and Kofman-Affaro, S., 1972, A study of meiotic germ cells in the gonads of foetal mouse chimaeras, J. Emhrvol. Exp. Morphol. 27: 515.Google Scholar
  106. 106.
    Mangia, F., Abbo-Halbasch, G., and Epstein, C. J., 1975, X chromosome expression during oogenesis in the mouse, Dey. Biol. 45: 366.Google Scholar
  107. 107.
    Meyer, W. J., III, Migeon, B. R., and Migeon, C. J., 1975, Locus on human X chromosome for dihydrotestosterone receptor and androgen insensitivity, Proc. Natl. Acad. Sci. U.S.A. 72: 1469.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Migeon, B. R., 1972, Stability of X chromosomal inactivation in human somatic cells, Nature 239: 87.PubMedGoogle Scholar
  109. 109.
    Migeon, B. R., and Huijing, F., 1974, Glycogen-storage disease associated with phosphorylase kinase deficiency: evidence for X inactivation. Am. J. Hum. Genet. 26: 360.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Migeon, B. R., Kaloustian, V. M. der, Nyhan, W. L., Young. W. J., and Childs, B., 1968, X-linked hypoxanthine-guanine phosphoribosyl transferase deficiency: heterozygote has two clonal populations, Science 160: 425.PubMedGoogle Scholar
  111. 111.
    Migeon, B. R., and Kennedy, J. F., 1975, Evidence for the inactivation of an X chromosome early in the development of the human female, Am. J. Hum. Genet. 27: 233.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Mitchison. J. M., 1971, “The Biology of the Cell Cycle,” Cambridge University Press, Cambridge.Google Scholar
  113. 113.
    Monesi, V., 1965, Differential rate of ribonucleic acid synthesis in the autosomes and sex chromosomes during male meiosis in the mouse, Chrornosoma 17: 11.Google Scholar
  114. 114.
    Morris, T., 1968, The XO and OY chromosome constitutions in the mouse, Genet. Res. 12: 125.PubMedGoogle Scholar
  115. 115.
    Moses, M. J., Counce, S. J., and Paulson, D. F., 1975, Synaptonemal complex complement of man in spreads of spermatocytes with details of the sex chromosome pair, Science 187: 363.PubMedGoogle Scholar
  116. 116.
    Muller. H. J., 1950, Evidence of the precision of genetic adaptation, Harvey Lect. XLIII: 1.Google Scholar
  117. 117.
    Muller, H. J., League, B. B., and Offermann, C. A., 1931, Effects of dosage changes of sex-linked genes, and the compensatory effects of other gene differences between male and female (Abstract), Anat. Rec. (Suppl.) 51: 11D.Google Scholar
  118. 118.
    Mystkowska, E. T., and Tarkowski, A. K., 1970, Behavior of germ cells and sexual differentiation in late embryonic and early postnatal mouse chimaeras, J. Embryo!. Exp. Morphol. 23: 395.Google Scholar
  119. 119.
    Nesbitt, M. N., 1971, X chromosome inactivation mosaicism in the mouse, Dey. Biol. 26: 252.Google Scholar
  120. 120.
    Nesbitt, M. N., 1974, Chimeras vs. X inactivation mosaics: significance of differences in pigment distribution, Dey. Biol. 38: 202.Google Scholar
  121. 121.
    Nesbitt, M. N., and Francke, U., 1973, A system of nomenclature for band patterns of mouse chromosomes, Chromosoma 41: 145.PubMedGoogle Scholar
  122. 122.
    Nesbitt, M. N., and Gartler, S. M., 1970, Replication of the mouse sex chromosomes early in the S period, Cytogenetics 9: 212.PubMedGoogle Scholar
  123. 123.
    Nesbitt, M. N., and Gartler, S. M., 1971, The applications of genetic mosaicism to developmental problems, Anna. Rev. Genet. 5: 143.Google Scholar
  124. 124.
    Nyhan, W. L., Bakay, B., Connor, J. D., Marks, J. F., and Keele. D. K., 1970, Hemizygous expression of glucose-6-phosphate dehydrogenase in erythrocytes of heterozygotes for the Lesch—Nyhan syndrome, Proc. Natl. Acad. Sci. U.S.A. 65: 214.PubMedCentralPubMedGoogle Scholar
  125. 125.
    Odartchenko, N., and Pavillard, M., 1970. Late DNA replication in male mouse meiotic chromosomes, Science 167: 1133.PubMedGoogle Scholar
  126. 126.
    Ohno. S., 1964, Life history of female germ cells in mammals. Proc. 2nd /nt. Conf. Congenital Malformations Nall. Found., 36.Google Scholar
  127. 127.
    Ohno, S., 1967, “Sex Chromosomes and Sex-Linked Genes,” Springer, Berlin.Google Scholar
  128. 128.
    Ohno, S., 1971, Simplicity of mammalian regulatory systems inferred by single gene determination of sex phenotypes, Nature 234: 134.Google Scholar
  129. 129.
    Ohno. S., 1973, Conservation of ancient linkage groups in evolution and some insight into the genetic regulatory mechanism of X-inactivation, Cold Spring Harbor Symp. Quant. Biol. 38: 155.Google Scholar
  130. 130.
    Ohno, S., and Cattanach, B. M., 1962, Cytological study of an X-autosome translocation in Mus musculus, Cytogenetics 1: 129.PubMedGoogle Scholar
  131. 131.
    Ohno, S., Christian, L., and Attardi, B., 1973, Role of testosterones in normal female function, Nature (London) New Biol. 243: 119.Google Scholar
  132. 132.
    Ohno, S., Christian, L., Attardi, B. J., and Kan, J., 1973, Modification of expression of the testicular feminization (Tfm) gene of the mouse by a “controlling element” gene, Nature (London) New Biol. 245: 92.Google Scholar
  133. 133.
    Ohno, S., Geller, L. N., and Kan, J., 1974, The analysis of Lyon’s hypothesis through preferential X-inactivation, Cell 1: 175.Google Scholar
  134. 134.
    Ohno, S., Kaplan, W. D., and Kinosita, R., 1959, Formation of the sex chromatin by a single X chromosome in liver cells of Rattus norvegicus, Exp. Cell Res. 18: 415.PubMedGoogle Scholar
  135. 135.
    Ohno, S., Kaplan, W. D., and Kinosita, R., 1961, X chromosome behavior in germ and somatic cells of Rattus norvegicus, Exp. Cell Res. 22: 535.PubMedGoogle Scholar
  136. 136.
    Ohno, S., Klinger, H. P., and Atkin, N. B., 1962, Human oogenesis, Cytogenetics 1: 42.PubMedGoogle Scholar
  137. 137.
    Ohno, S., Stenius, C., and Christian, L., 1966, The XO as the normal female in the creeping vole (Microtus oregoni), in “Chromosomes Today” (C. D. Darlington and K. R. Lewis, eds.), Oliver and Boyd, Edinburgh.Google Scholar
  138. 138.
    Passarge, E., and Fries, E., 1973, X chromosome inactivation in X-linked hypohidrotic ectodermal dysplasia, Nature (London) New Biol. 245: 58.Google Scholar
  139. 139.
    Pathak, S., and Stock, A. D., 1974, The X chromosomes of mammals: karyological homology as revealed by banding techniques, Genetics 78: 703.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Plotnick, F., Klinger, H. P., and Kosseff, A. L., 1971, Sex-chromatin formation in pre-implantation rabbit embryos, Cytogenetics 10: 244.PubMedGoogle Scholar
  141. 141.
    Polani, P. E., Angell, R., Giannelli, F., de la Chapelle, A., Race, R. R., and Sanger, R., 1970, Evidence that the Xg locus is inactivated in structurally abnormal X chromosomes, Nature 227: 613.PubMedGoogle Scholar
  142. 142.
    Race, R. R., 1971, Is the Xg blood group locus subject to inactivation? Proc. 4th Int. Congr. Hum. Genet., 312.Google Scholar
  143. 143.
    Rao, S. R. V., and Jhanwar, S. C., 1975, Is late replication of the inactive X chromosome irreversible in all cells of mammals? Cytogenet. Cell Genet. 14: 140.PubMedGoogle Scholar
  144. 144.
    Rao, S. R. V., Sharma, V. K., and Shah, V. C., 1970, DNA synthesis in duplicate-type sex chromosomes of the Indian house shrew, Suncus nuurinus (Insectivora), Cytogenetics 9: 384.PubMedGoogle Scholar
  145. 145.
    Rattazzi, M. C., and Cohen, M. M., 1972, Further proof of genetic inactivation of the X chromosome in the female mule, Nature 237: 393.PubMedGoogle Scholar
  146. 146.
    Ray, M., Gee, P. A., Richardson, B. J., and Hamerton, J. L., 1972, G6PD expression and X chromosome late replication in fibroblast clones from a female mule, Nature 237: 396.Google Scholar
  147. 147.
    Riggs, A. D., 1975, X inactivation, differentiation, and DNA methylation, Cytogenet. Cell Genet. 14: 9.PubMedGoogle Scholar
  148. 148.
    Romeo, G., and Migeon, B. R., 1970, Genetic inactivation of the a-galactosidase locus in carriers of Fabrys’ disease, Science 170: 180.PubMedGoogle Scholar
  149. 149.
    Russell, L. B., 1961, Genetics of mammalian sex chromosomes, Science 133: 1795.PubMedGoogle Scholar
  150. 150.
    Russell, L. B., 1971, Attempts to demonstrate different inactivating states for normal mouse X chromosomes, Genetics 68: S55.Google Scholar
  151. 151.
    Sager, P., and Kitchin, R., 1975, Selective silencing on eukaryotic DNA, Science 189: 426.PubMedGoogle Scholar
  152. 152.
    Salzmann, J., De Mars, R., and Benke, P., 1968, Single-allele expression at an X-linked hyperuricemia locus in heterozygous human cells, Proc. Natl. Acad. Sci. U.S.A. 60: 545.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Sandler, L., and Hecht, F., 1973, Genetic effects of aneuploidy, Am. J. Hum. Genet. 25: 332.PubMedCentralPubMedGoogle Scholar
  154. 154.
    Sarto, G. E., 1973, Cytogenetics of fifty patients with primary amenorrhea, Am. J. Obstet. Gynecol. 119: 14.Google Scholar
  155. 155.
    Sarto, G. E., Therman, E., and Patau, K., 1973, X inactivation in man: a woman with t (Xq—; 12 q+), Am. J. Hum. Genet. 25: 262.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Schneider, L. K., and Rieke, W. O., 1967, DNA replication patterns and chromosomal protein synthesis in opossum lymphocytes in vitro, J. Cell Biol. 33: 497.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Singh, R. P., and Carr, D. H., 1966, The anatomy and histology of XO human embryos and fetuses, Anat. Rec. 155: 369.PubMedGoogle Scholar
  158. 158.
    Steele, M. W., and Migeon, B. R., 1973, Sex differences in activity of glucose-6phosphate dehydrogenase from cultured human fetal lung cells despite X-inactivation, Biochem. Genet. 9: 163.PubMedGoogle Scholar
  159. 159.
    Steele, M. W., and Owens, K. E., 1973, Developmental, tissue-specific, and sex differences in activity among three enzymes from human erythrocytes and cultured fibroblasts, Biochem. Genet. 9: 147.PubMedGoogle Scholar
  160. 160.
    Stern, C., 1960, Dosage compensation—development of a concept and new facts, Can. J. Genet. Cytol. 2: 105.Google Scholar
  161. 161.
    Sturtevant, A. H., 1929, The claret mutant type of Drosophila simulans: a study of chromosome elimination and cell-lineage, Z. Wiss. Zool. Abt. A. 135: 323.Google Scholar
  162. 162.
    Takagi, N., 1974, Differentiation of X chromosomes in early female mouse embryos. Exp. Cell Res. 86: 127.PubMedGoogle Scholar
  163. 163.
    Takagi, N., and Oshimura, M., 1973, Fluorescence and giemsa banding studies of the allocyclic X chromosome in embryonic and adult mouse cells. Exp. Cell. Res. 78: 127.PubMedGoogle Scholar
  164. 164.
    Takagi, N., and Sasake, M., 1975, Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256: 640.PubMedGoogle Scholar
  165. 165.
    Tennes, K., Puck, M., Bryant, K., Frankenburg, W., and Robinson, A., 1975, A developmental study of girls with trisomy X, Ant. J. Hum. Genet. 27: 71.Google Scholar
  166. 166.
    Teplitz, R., and Ohno, S., 1963, Postnatal induction of ovogenesis in the rabbit (Oryctolagus cuniculus), Exp. Cell. Res. 31: 183.Google Scholar
  167. 167.
    Therman, E., and Patau, K., 1974, Abnormal X chromosomes on man: origin, behavior, and effects, Humangenetik 25: 1.PubMedGoogle Scholar
  168. 168.
    Therman, E., Sarto, G. E., and Patau, F., 1974, Center for Barr body condensation on the proximal part of the human Xq: a hypothesis, Chromosorna 44: 361.Google Scholar
  169. 169.
    Tiepolo, L., Fraccaro, M., Hulten, M., Lindsten, J., Mannini. A., and Ming, P. L., 1967, Timing of sex chromosome replication in somatic and germ line cells of the mouse and rat, Cytogenetic 6: 51.Google Scholar
  170. 170.
    Vandenberg, J. L., Cooper, D. W., and Sharman, G. B., 1973, Phosphoglycerate kinase. A polymorphism in the wallaby, Macropus parryi: activity of both X chromosomes in muscle, Nature (London) New. Biol. 243: 47.Google Scholar
  171. 171.
    Weaver, D. D., Gartler, S. M., Boue, A., and Boue, J. G., 1975, Evidence for two active X-chromosomes in a human XXY triploid, Humangenetik 28: 39.PubMedGoogle Scholar
  172. 172.
    Witkop, C. J., 1967, Partial expression of sex linked recessive amelogenesis imperfecta in females compatible with the Lyon hypothesis, Oral Surg. Oral Med. Oral Pathol. 23: 121.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Stanley M. Gartler
    • 1
  • Robert J. Andina
    • 1
  1. 1.Departments of Medicine and GeneticsUniversity of WashingtonSeattleUSA

Personalised recommendations