Advertisement

Integrated Acoustic Array

  • K. R. Erikson
  • R. Zuleeg

Abstract

A fully integrated 8 × 8 element acoustic array module has been fabricated and its electro-acoustic performance measured. The matrix of 2 × 2 mm hydrophones is sawcut into a 3 MHz fundamental resonance frequency Y-cut LiNbO3 wafer. Dual-gate deep depletion mode IGFET’s are used with each element of the array for addressing and amplification. This integrated circuitry is contained on a single silicon on sapphire wafer and is bonded to the piezoelectric material in one processing operation. Addressing terminals are available along one edge of the array with signal outputs along another edge.

At 1 MHz in a water medium, the sensitivity was measured to be -115 dBV/micro Pascal and the minimum detectable acoustical intensity was measured to be 27 nano watt/cm2. The dual gate cascode amplifier provides 15 dB of voltage gain with a 15k ohm load resistor and has a feedback capacitance of 0.05 of, which provides flat frequency response to 5 MHz.

Keywords

Piezoelectric Material Lithium Niobate Piezoelectric Element Large Scale Integrate High Frequency Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Mueller and P,N. Keating, “The Liquid-Gas Interface as a Recording Medium for Acoustical Holography” in Acoustical Holography, Vol. ?, A.F. Metherell et ai, Eds., Plenum Press N.Y., 1969, Ch. 3, pp. 49–55.CrossRefGoogle Scholar
  2. 2.
    B.B. Brenden, “A Comparison of Acoustical Holography Methods” in Acoustical Holography, Vol. 1, A.F. Metherell et al, Eds., Plenum Press N.Y., 1969 Ch. 4, pp. 57–71.CrossRefGoogle Scholar
  3. 3.
    D.R. Holbrook, E.E. McCurry and V. Richards, “Medical Uses of Acoustical Holography”, in Acoustical Holography, Vol. P.S. Green, Ed., Plenum Press, N.Y., 1974, po. 415–451.CrossRefGoogle Scholar
  4. 4.
    A.F. Metherell, K.R. Erikson, J.E. Wreede, R.E. Norton, R.E. Greer and R.M. Watts, “A Medical Imaging Acoustical Holography System Using Linearized Subfringe Holographic Interferometry”, in Acoustical Holography, Vol. 5, P.S.-Green, Ed., Plenum Press, N.Y., 1974, pp. 453–470.CrossRefGoogle Scholar
  5. 5.
    R.S. Mezrich, K.R. Etzold and D.H.R. Vilkomerson, “System for Visualizing and Measuring Ultrasonic Wavefronts” RCA Review 35, pp. 483–519 (1974).ADSGoogle Scholar
  6. 6.
    P.Alais “Acoustical Imaging by Electrostatic Transducers” in Acoustical Holography, Vol. 4, G. Wade, Edl, 1972, pp. 237–249.Google Scholar
  7. 7.
    W.R.Fenner and G.E. Stewart, An Ultrasonic Holographic Imaging System for Medical Applications“ in Acoustical Holography, Vol. 5, P.S. Green, Ed., Plenum Press, N.Y., 1974, pp. 493–503.Google Scholar
  8. 8.
    P.S. Green, L.S. Schaefer, E.D. Jones and J.R. Suarez, New High-Performance Ultrasonic Camera“, in Acoustical Holography, Vol. 5, P.S. Green, Ed., Plenum Press, N.Y., 1974, pp. 493–503.CrossRefGoogle Scholar
  9. 9.
    J.E. Jacobs, “Ultrasound Image Converter Systems Utilizing Electron-Scanning Techniques’, IEEE Trans., Sonics and Ultrasonics, SU-15, pp. 146–152 (1968).Google Scholar
  10. 10.
    G.L. Sackman and R.J. Larkin, “An Electronically Scanned Transducer Array Using Micro Circuit Devices” in Acoustical Holography, Vol. 3, A.F. Metherell, Ed., Plenum Press, N.Y;, 1971, DD. 21_1–223.Google Scholar
  11. 11.
    N.0. ‘Booth and J.L. Sutton,,“Holographic Acoustic Imaging” Naval Undersea Center, San Diego, CA, NUC-TP 424.Google Scholar
  12. 12.
    E. Marom, R.K. Mueller, R.F. Koopelmann, G.Z.Zilinskas, “Design and Preliminar,y Test of an Underwater Viewing System Using Sound Holography”;in Acoustical Holography, Vol. 3, A.F. Metherell, Ed., Plenum Press,;1971,;op. 191–209Google Scholar
  13. M.G. Maginness,.J.J. Plummer, and J.D. Meindl, “An Acoustic Image Sensor Using a Transmit-Receiver Array” in Acoustical Holography, Vol. 5, P.S. Green, Ed., 1974, pp. 619–631.Google Scholar
  14. 14.
    D.H.R. Vilkomerson, “Analysis of Various Ultrasonic Holographic Imaging Methods for Medical Diagnosis”, Acoustical Holography, Vol. 4., G,’4ade, ED., 1972, op. 401–429Google Scholar
  15. 15.
    J,E. McCormick “On the Reliability of Microconnections” Electronic Packaging and Production, pp. 167–168, June 1968.Google Scholar
  16. 16.
    R.S. Muller and J. Conragan, “Transducer Action in a MetalInsulator-Plezoelectric-Semiconductor Triode”. Appl. Phys, Lett., 20, pp. 156–158_’(1972).Google Scholar
  17. 17.
    E.W. Greeneich and R.S. Muller, “Acoustic-Wave Detection via a Piezoelectric Field-Effect Transducer”, Appì. Phys. Lett., 20, pp. 156.153, (1972)Google Scholar
  18. 18.
    J.K. Liu, R.B. Stokes and K.M. Lakin, “Evaluation of AIN Films on Sapphire for Surface Acoustic Wave Applications”, Proc.-IEEE, 1975 Ultrasonics Symposium, 75 CHO 994–450 IEEE, N.Y., pp. 234–237 (1975)Google Scholar
  19. 19.
    T.F. Reuter and R.H. Bolt, Sonics Wiley, N.Y., Ch. 4, 1955.Google Scholar
  20. 20.
    J.S.T. Huang, “Characteristics of a Depletion-Type IGFET”, IEEE Trans., ED-20, pn. 513–514 (1973).Google Scholar
  21. 21.
    R.S. Ronen and L. Strauss, “The Silicon on Sapphire DOS Tetrode Source Small Signai Features, LF-to-UHF”, IEEE Trans. on Electron Devices ED-21, 100–109, (1974).Google Scholar
  22. 22.
    R.S. Muller and J. Conragan, “A Metal-Insulator-Piezoelectric Semiconductor Electromechanical Transducer”, IEEE Trans. on Elect. Dev. ED-12, pp. 590’-595,. (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • K. R. Erikson
    • 1
  • R. Zuleeg
    • 2
  1. 1.Rohe Scientific CorporationSanta AnaUSA
  2. 2.McDonnell Douglas Astronautics CompanyHuntington BeachUSA

Personalised recommendations