Advertisement

Mass Spectra of Bile Acids

  • J. Sjövall
  • P. Eneroth
  • R. Ryhage

Abstract

In the last ten years mass spectrometry has grown to become one of the most valuable techniques for analysis and structure determination of bile acids. A very important reason for this development is the construction of combined gas chromatography—mass spectrometry instruments capable of dealing with complex biological mixtures at a high sensitivity level. Since the biochemist and clinical chemist are interested mainly in the analysis of biological materials, the aim of this chapter is to provide information on the use of this instrument combination, i.e., the use of a gas chromatograph as an inlet system or the use of a mass spectrometer as a gas chromatographic detector. Emphasis has been put on practical considerations and on correlations between mass spectra and structure rather than on mechanistic interpretations of the spectra. For details on the latter aspect the reader is referred to the books by Budzikiewicz, Djerassi, and Williams (1, 2).

Keywords

Bile Acid Base Peak Trimethylsilyl Ether Silyl Ether Hydroxyl Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Budzikiewicz, C. Djerassi, and D.H. Williams, “Structure elucidation of natural products by mass spectrometry. Vol. II. Steroids, terpenoids, sugars and miscellaneous compounds,” Holden-Day, San Francisco (1964).Google Scholar
  2. 2.
    H. Budzikiewicz, C. Djerassi, and D.H. Williams, “Mass spectrometry of organic compounds,” p. 417, Holden-Day, San Francisco (1967).Google Scholar
  3. 3.
    S. Bergström, R. Ryhage, and E. Stenhagen, Acta Chem. Scand. 12, 1349 (1958).CrossRefGoogle Scholar
  4. 4.
    R. Ryhage and E. Stenhagen, J. Lipid Res. 1, 361 (1960).PubMedGoogle Scholar
  5. 5.
    S. Bergström, R. Ryhage, and E. Stenhagen, Svensk Kern. Tidskr. 73, 566 (1961).Google Scholar
  6. 6.
    S. Bergström, L. Krabisch, and U.G. Lindeberg, Acta Soc. Med. Uppsal. 64, 160 (1959).Google Scholar
  7. 7.
    A.D. Cross, Biochem. J. 90, 314 (1964).Google Scholar
  8. 8.
    R. Ryhage, Anal. Chem. 36, 759 (1964).CrossRefGoogle Scholar
  9. 9.
    E. Stenhagen, Z. Anal. Chem. 205, 109 (1964).CrossRefGoogle Scholar
  10. 10.
    J.T. Watson and K. Biemann, Anal. Chem. 37, 844 (1965).CrossRefGoogle Scholar
  11. 11.
    P. Eneroth, K. Hellström, and R. Ryhage, J. Lipid Res. 5, 245 (1964).PubMedGoogle Scholar
  12. 12.
    P. Eneroth, B. Gordon, R. Ryhage, and J. Sjovall, J. Lipid Res. 7, 511 (1966).PubMedGoogle Scholar
  13. 13.
    P. Eneroth, B. Gordon, and J. Sjövall, J. Lipid Res. 7, 527 (1966).Google Scholar
  14. 14.
    P.D.G. Dean and R.T. Aplin, Steroids, 8, 565 (1966).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Egger, Monatsh. Chem. 99, 1163 (1968).CrossRefGoogle Scholar
  16. 16.
    R. Ryhage, Arkiv Kemi 26, 305 (1967).Google Scholar
  17. 17.
    E.M. Chambaz, G. Maume, B. Maume, and E.C. Horning, Anal. Letters 1, 749 (1968).Google Scholar
  18. 18.
    J. Sjövall, in “The Gas Liquid Chromatography of Steroids” (J. K. Grant, ed.), Mem. Soc. Endocrinol. No. 16, p. 243, Cambridge University Press, London (1967).Google Scholar
  19. 19.
    J. Sjövall, in “Bile Salt Metabolism” (L. Schiff, J. Carey, Jr., and J. Dietschy, ed.), p. 205, Charles C Thomas, Springfield, Illinois (1969).Google Scholar
  20. 20.
    P. Eneroth, K. Hellström, and R. Ryhage, Steroids 6, 707 (1965).PubMedCrossRefGoogle Scholar
  21. 21.
    B.A. Knights, J. Gas Chromatog. 5, 273 (1967).CrossRefGoogle Scholar
  22. 22.
    B.A. Knights, Phytochemistry 6, 407 (1967).CrossRefGoogle Scholar
  23. 23.
    C.J.W. Brooks, E.C. Horning, and J.S. Young, Lipids 3, 389 (1968).CrossRefGoogle Scholar
  24. 24.
    E.C. Horning, C.J.W. Brooks, and W.J.A. VandenHeuvel, in “Advances in Lipid Research” (R. Paoletti and D. Kritchevsky eds.), Vol. 6, p. 273, Academic Press, New York (1968).Google Scholar
  25. 25.
    M. Spiteller-Friedman and G. Spiteller, Fortschr. Chem. Forsch. 12, 440 (1969).Google Scholar
  26. 26.
    H. Egger and G. Spiteller, Monatsh. Chem. 97, 579 (1966).CrossRefGoogle Scholar
  27. 27.
    W.H. Elliott, personal communication (1969).Google Scholar
  28. 28.
    J. Sjövall and K. Sjövall, Steroids 12, 359 (1968).PubMedCrossRefGoogle Scholar
  29. 29.
    H. Budzikiewicz and C. Djerassi, J. Am. Chem. Soc. 84, 1430 (1962).CrossRefGoogle Scholar
  30. 30.
    J.G. Allen, G.H. Thomas, C.J.W. Brooks, and B.A. Knights, Steroids 13, 133 (1969).PubMedCrossRefGoogle Scholar
  31. 31.
    A. Kallner, Acta Chem. Scand. 22, 2353 (1968).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Kallner, Acta Chem. Scand. 22, 2361 (1968).PubMedCrossRefGoogle Scholar
  33. 33.
    S.A. Ziller, Jr., E.A, Doisy, Jr., and W.H. Elliott, J. Biol. Chem. 243, 5280 (1968).PubMedGoogle Scholar
  34. 34.
    A. Kallner, Acta Chem. Scand. 21, 322 (1967).PubMedCrossRefGoogle Scholar
  35. 35.
    S.A. Ziller, Jr., M.N. Mitra, and W.H. Elliott, Chem. Ind. 1967, 999.Google Scholar
  36. 36.
    M.N. Mitra and W.H. Elliott, J. Org. Chem. 33, 2814 (1968).CrossRefGoogle Scholar
  37. 37.
    H. Danielsson, A. Kallner, and J. Sjövall, J. Biol. Chem. 238, 3846 (1963).Google Scholar
  38. 38.
    M.N. Mitra and W.H. Elliott, J. Org. Chem. 33, 175 (1968).PubMedCrossRefGoogle Scholar
  39. 39.
    L. Tökés, G. Jones, and C. Djerassi, J. Am. Chem. Soc. 90, 5465 (1968).CrossRefGoogle Scholar
  40. 40.
    J.A. McCloskey, R.N. Stillwell, and A.M. Lawson, Anal. Chem. 40, 233 (1968).CrossRefGoogle Scholar
  41. 41.
    A.G. Sharkey, Jr., R.A. Friedel, and S.H. Langer, Anal. Chem. 29, 770 (1957).CrossRefGoogle Scholar
  42. 42.
    H. Eriksson, J.-A. Gustafsson, and J. Sjövall, European J. Biochem. 6, 219 (1968).CrossRefGoogle Scholar
  43. 43.
    S.S. Friedland, G.H. Lane, R.T. Longman, K.E. Train, and M.J. O’Neal, Anal. Chem. 31, 169 (1959).CrossRefGoogle Scholar
  44. 44.
    C. Djerassi, J. Karliner, and R.T. Aplin, Steroids 6, 1 (1965).PubMedCrossRefGoogle Scholar
  45. 45.
    J. Diekman and C. Djerassi, J. Org. Chem. 32, 1005 (1967).PubMedCrossRefGoogle Scholar
  46. 46.
    R. Ryhage and E. Stenhagen, Arkiv Kemi 13, 523 (1959).Google Scholar
  47. 47.
    R. Ryhage and E. Stenhagen, Arkiv Kemi 15, 291 (1960).Google Scholar
  48. 48.
    W.J.A. VandenHeuvel and E.C. Horning, Biochem. Biophys. Acta 74, 560 (1963).PubMedCrossRefGoogle Scholar
  49. 49.
    H.M. Fales and T. Luukkainen, Anal. Chem. 37, 955 (1965).CrossRefGoogle Scholar
  50. 50.
    C.C. Sweeley, W.H. Elliott, I. Fries, and R. Ryhage, Anal. Chem. 38, 1549 (1966).PubMedCrossRefGoogle Scholar
  51. 51.
    R.A. Hites and K. Biemann, Anal. Chem. 40, 1217 (1968).CrossRefGoogle Scholar
  52. 52.
    B. Hedfjäll, P.-A. Jansson, Y. Mârde, R. Ryhage, and S. Wikström, J. Scient. Instr. 2, 1031 (1969).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • J. Sjövall
    • 1
  • P. Eneroth
    • 1
  • R. Ryhage
    • 1
  1. 1.Department of Chemistry and Laboratory for Mass SpectrometryKarolinska InstitutetStockholmSweden

Personalised recommendations