Advertisement

Naturally Occurring Bile Acids and Alcohols and Their Origins

  • John T. Matschiner

Abstract

The first scientific phase of bile acid investigation began in the middle of the nineteenth century when these compounds were first obtained in crystalline form. Earlier observations of bile and its properties are often cited but the efforts of the early writers, Hippocrates, Galen, Paracelsus, and others, were confined to the subjective and speculative considerations of their age. The first scientific phase, characterized by uncertainty and confusion concerning the constituents of bile, terminated around the end of the nineteenth century and gave rise to a productive period during which much information was obtained. The beginning and improvements in methods of isolation and characterization of bile acids during this period provided a strong background of structural knowledge concerning these compounds. Studies were stimulated by the recognized relationship between the bile acids and cholesterol, and, later, the steroid hormones. The contributions of Wieland and his collaborators to the structure of the bile acids began in 1912 and are reviewed in Fieser’s monograph on the steroids (1).

Keywords

Bile Acid Cholic Acid Chenodeoxycholic Acid Deoxycholic Acid Human Feces 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. F. Fieser and M. Fieser, “Steroids,” Reinhold, New York (1959).Google Scholar
  2. 2.
    G. A. D. Haslewood, in “Comparative Biochemistry” (M. Florkin and H. S. Mason, eds.), Vol. 3, part 3, p. 205, Academic Press, New York (1962).Google Scholar
  3. 3.
    G. A. D. Haslewood, Biol. Rev. 39, 537 (1964).PubMedGoogle Scholar
  4. 4.
    G. A. D. Haslewood, “Bile Salts,” Methuen, London (1967).Google Scholar
  5. 5.
    G. A. D. Haslewood, J. Lipid Res. 8, 535 (1967).PubMedGoogle Scholar
  6. 6.
    H. Sobotka, “Physiological Chemistry of the Bile,” Williams Wilkins Co., Baltimore (1937).Google Scholar
  7. 7.
    H. Sobotka, “The Chemistry of the Steroids,” Williams Wilkins Co., Baltimore (1938).Google Scholar
  8. 8.
    C. W. Shoppee, “Chemistry of the Steroids” ( 2nd ed. ), Butterworths, Washington (1964).Google Scholar
  9. 9.
    H. Van Belle, “Cholesterol, Bile Acids and Atherosclerosis,” North-Holland Publishing Co., Amsterdam (1965).Google Scholar
  10. 10.
    T. Hoshita and T. Kazuno, Adv. Lipid Res. 6, 207 (1968).PubMedGoogle Scholar
  11. 11.
    Elsevier’s Encyclopedia of Organic Chemistry“ (F. Radt, ed.), Series 3, Vol. 4—Supplement, Steroids Part 4, Springer-Verlag, Berlin (1962).Google Scholar
  12. 12.
    L. J. Thenard, Annales de Chimie (et Physique) (1) 64, 103 (1807); cited in Sobotka (7).Google Scholar
  13. 13.
    J. Berzelius, Annales de Chimie (et Physique) (1) 71, 218 (1809); cited in Sobotka (7).Google Scholar
  14. 14.
    L. Gmelin, in “Die Verdauung nach Versuchen,” Heidelberg and Leipzig (1826); cited in Sobotka (7).Google Scholar
  15. 15.
    J. Berzelius, Ann. 33, 139 (1840).Google Scholar
  16. 16.
    E. von Gorup-Besanez, Ann. 59, 129 (1846).Google Scholar
  17. 17.
    E. A. Platner, Ann. 51, 105 (1844).Google Scholar
  18. 18.
    F. Verdeil, Ann. 59, 311 (1846).Google Scholar
  19. 19.
    A. Strecker, Ann. 67, 1 (1848).Google Scholar
  20. 20.
    A. Strecker, Ann. 70, 149 (1849).Google Scholar
  21. 21.
    C. Gundelach and A. Strecker, Ann. 62, 205 (1847).Google Scholar
  22. 22.
    T. Marsson, Ann. 72, 317 (1849).Google Scholar
  23. 23.
    W. Heintz and J. Wislicenus, Ann. Phys. Chem. 108, 547 (1859); cited by B. Moore in “Textbook of Physiology” (E. A. Sharpey-Shafer, ed.), Vol. 1, Macmillan, New York (1898).Google Scholar
  24. 24.
    H. Dermarcay, Ann. 27, 270 (1838).Google Scholar
  25. 25.
    J. L. Thudicum, Ann. Chem. Med. 2, 251 (1881); cited in Sobotka (7).Google Scholar
  26. 26.
    P. Latschinoff, Ber. 18, 3039 (1885).Google Scholar
  27. 27.
    F. Mylius, Ber. 19, 369 (1886).Google Scholar
  28. 28.
    F. Mylius, Ber. 19, 2000 (1886).Google Scholar
  29. 29.
    H. Wieland and H. Sorge, Z. Physiol. Chem. 97, 1 (1916).Google Scholar
  30. 30.
    H. Fischer, Z. Physiol. Chem. 73, 204 (1911).Google Scholar
  31. 31.
    A. Windaus and A. Bohne, Ann. 433, 278 (1923).Google Scholar
  32. 32.
    H. Wieland and G. Reverey, Z. Physiol. Chem. 140, 186 (1924).Google Scholar
  33. 33.
    H. Windaus, A. Bohne, and E. Schwarzkopf, Z. Physiol. Chem. 140, 177 (1924).Google Scholar
  34. 34.
    O. Hammarsten, in “Handbuch der Biologischen Arbeitsmethoden” (E. Abderhalden, ed.), Vol. 1, part 6, p. 211, Urban and Schwarzenberg, Berlin—Vienna (1925).Google Scholar
  35. 35.
    S. M. White, Biochem. J. 23, 1165 (1929).PubMedGoogle Scholar
  36. 36.
    H. Wieland and S. Kishi, Z. Physiol. Chem. 214, 47 (1933).Google Scholar
  37. 37.
    F. Breusch, Z. Physiol. Chem. 227, 242 (1934).Google Scholar
  38. 38.
    H. Wieland and W. Siebert, Z. Physiol. Chem. 262, 1 (1939).Google Scholar
  39. 39.
    G. A. Howard and A. J. P. Martin, Biochem. J. 46, 532 (1950).PubMedGoogle Scholar
  40. 40.
    S. Bergström and J. Sjövall, Acta Chem. Scand. 5, 1267 (1951).Google Scholar
  41. 41.
    J. Sjövall, Acta Physiol. Scand. 29, 232 (1953).PubMedGoogle Scholar
  42. 42.
    S. Bergström and A. Norman, Proc. Soc. Exp. Biol. Med. 83, 71 (1953).PubMedGoogle Scholar
  43. 43.
    A. Norman, Acta Chem. Scand. 7, 1413 (1953).Google Scholar
  44. 44.
    E. H. Ahrens, Jr., and L. C. Craig, J. Biol. Chem. 195, 763 (1952).Google Scholar
  45. 45.
    E. H. Mosbach, C. Zomzely, and F. E. Kendall, Arch. Biochem. Biophys. 48, 95 (1954).PubMedGoogle Scholar
  46. 46.
    J. T. Matschiner, T. A. Mahowald, W. H. Elliott, E. A. Doisy, Jr., S. L. Hsia, and E. A. Doisy, J. Biol. Chem. 225, 771 (1957).PubMedGoogle Scholar
  47. 47.
    J. Sjövall, Acta Chem. Scand. 6, 1552 (1952).Google Scholar
  48. 48.
    D. Kritchevsky and M. R. Kirk, J. Am. Chem. Soc. 74, 4713 (1952).Google Scholar
  49. 49.
    S. M. Grundy, E. H. Ahrens, Jr., and T. A. Miettinen, J. Lipid Res. 6, 397 (1965).PubMedGoogle Scholar
  50. 50.
    S. S. Ali, A. Kuksis, and J. M. R. Beveridge, Can. J. Biochem. 44, 957 (1966).PubMedGoogle Scholar
  51. 51.
    S. Bergström, R. Ryhage, and E. Stenhagen, Acta Chem. Scand. 12, 1349 (1958).Google Scholar
  52. 52.
    P. Eneroth, B. Gordon, R. Ryhage, and J. Sjövall, J. Lipid Res. 7, 511 (1966).PubMedGoogle Scholar
  53. 53.
    A. Windaus, Arch. Pharm. 246, 117 (1908); cited in Fieser and Fieser (1).Google Scholar
  54. 54.
    P. Latschinoff, Ber. 12, 1518 (1879).Google Scholar
  55. 55.
    A. Windaus and K. Neukirchen, Ber. 52, 1915 (1919).Google Scholar
  56. 56.
    H. Wieland and F. J. Weil, Z. Physiol. Chem. 80, 287 (1912).Google Scholar
  57. 57.
    A. Windaus, Ann. 447, 233 (1926).Google Scholar
  58. 58.
    M. Shoda, J. Biochem. 7, 505 (1927).Google Scholar
  59. 59.
    T. Kimura, Z. Physiol. Chem. 248, 280 (1937).Google Scholar
  60. 60.
    L. F. Fieser and M. Fieser, “Natural Products Related to Phenanthrene,” Reinhold, New York (1949).Google Scholar
  61. 61.
    S. Kishi, Z. Physiol. Chem. 238, 210 (1936).Google Scholar
  62. 62.
    H. Danielsson, A. Kallner, and J. Sjövall, J. Bio!. Chem. 238, 3846 (1963).Google Scholar
  63. 63.
    B. Koechlin and T. Reichstein, He!v. Chim. Acta 25, 918 (1942).Google Scholar
  64. 64.
    H. Wieland and P. Weyland, Z. Physiol. Chem. 110, 123 (1920).Google Scholar
  65. 65.
    S. Kishi, Z. Physiol. Chem. 238, 210 (1936).Google Scholar
  66. 66.
    H. Danielsson and K. Einarsson, Acta. Chem. Scand. 18, 732 (1964).Google Scholar
  67. 67.
    L. J. Schoenfield and J. Sjövall, Acta Chem. Scand. 20, 1297 (1966).PubMedGoogle Scholar
  68. 68.
    J. B. Carey, Jr., and G. Williams, Science 150, 620 (1965).PubMedGoogle Scholar
  69. 69.
    E. Mosettig, E. Heftmann, Y. Sato, and E. Weiss, Science 128, 1433 (1958).PubMedGoogle Scholar
  70. 70.
    J. B. Carey, Jr., and G. Williams, J. Clin. Invest. 42, 450 (1963).PubMedGoogle Scholar
  71. 71.
    H. Wieland, E. Dane, and E. Scholz, Z. Physiol. Chem. 211, 261 (1932).Google Scholar
  72. 72.
    L. F. Fieser and R. Ettorre, J. Am. Chem. Soc. 75, 1700 (1953).Google Scholar
  73. 73.
    E. Heftmann, E. Weiss, H. K. Miller, and E. Mosettig, Arch. Biochem. Biophys. 84, 324 (1959).PubMedGoogle Scholar
  74. 74.
    H. Danielsson, P. Eneroth, K. Hellström, S. Lindstedt, and J. Sjövall, J. Biol. Chem. 238, 2299 (1963).PubMedGoogle Scholar
  75. 75.
    T. Hosizima, H. Takata, Z. Uraki, and S. Sibuya, J. Biochem. 12, 393 (1931).Google Scholar
  76. 76.
    L. W. Wells, dissertation, St. Louis University, 1964, p. 68.Google Scholar
  77. 77.
    H. Wieland and R. Jacobi, Z. Physiol. Chem. 148, 232 (1925).Google Scholar
  78. 78.
    S. Bergström and J. Sjövall, Acta Chem. Scand. 8, 611 (1954).Google Scholar
  79. 79.
    I. D. P. Wootton and H. S. Wiggins, Biochem. J. 55, 292 (1953).PubMedGoogle Scholar
  80. 80.
    D. H. Sandberg, J. Sjövall, K. Sjövall, and D. A. Turner, J. Lipid Res. 6, 182 (1965).PubMedGoogle Scholar
  81. 81.
    J. B. Carey, Jr., Science 123, 892 (1956).Google Scholar
  82. 82.
    S. Hirofuji, J. Biochem. 58, 27 (1965).PubMedGoogle Scholar
  83. 83.
    S. Kawai, Z. Physiol. Chem. 214, 71 (1932).Google Scholar
  84. 84.
    T. Iwasaki, Z. Physiol. Chem. 244, 181 (1936).Google Scholar
  85. 85.
    O. Hammarsten, Z. Physiol. Chem. 36, 525 (1902).Google Scholar
  86. 86.
    T. Kanazawa, A. Shimazaki, T. Sato, and T. Hoshino, Proc. Japan Acad. 30, 391 (1954); cited in C. A. 49, 14785 (1955).Google Scholar
  87. 87.
    H. Danielsson, P. Eneroth, K. Hellström, and J. Sjövall, J. Biol. Chem. 237, 3657 (1962).PubMedGoogle Scholar
  88. 88.
    S. Bergstrom, H. Danielsson, and A. Göransson, Acta Chem. Scand. 13, 776 (1959).Google Scholar
  89. 89.
    S. L. Hsia, J. T. Matschiner, T. A. Mahowald, W. H. Elliott, E. A. Doisy, Jr., S. A. Thayer, and E. A. Doisy, J. Bio!. Chem. 225, 811 (1957).Google Scholar
  90. 90.
    T. Okishio and P. P. Nair, Biochemistry 5, 3662 (1966).PubMedGoogle Scholar
  91. 91.
    T. H. Lin, R. Rubinstein, and W. L. Holmes, J. Lipid Res. 4, 63 (1963).PubMedGoogle Scholar
  92. 92.
    M. Makita and W. W. Wells, Anal. Biochem. 5, 523 (1963).PubMedGoogle Scholar
  93. 93.
    H. G. Roscoe and M. J. Fahrenbach, Anal. Biochem. 6, 520 (1963).PubMedGoogle Scholar
  94. 94.
    W. H. Hoehn, J. Linsk, and R. B. Moffett, J. Am. Chem. Soc. 68, 1855 (1946).PubMedGoogle Scholar
  95. 95.
    J. T. Matschiner, R. L. Ratliff, T. A. Mahowald, E. A. Doisy, Jr., W. H. Elliott, S. L. Hsia, and E. A. Doisy, J. Biol. Chem. 230, 589 (1958).Google Scholar
  96. 96.
    R. L. Ratliff, J. T. Matschiner, E. A. Doisy, Jr., S. L. Hsia, S. A. Thayer, W. H. Elliott, and E. A. Doisy, J. Biol. Chem. 236, 685 (1961).Google Scholar
  97. 97.
    D. N. Jones and G. H. R. Summers, J. Chem. Soc. 1959, 2594.Google Scholar
  98. 98.
    R. Schoenheimer and C. G. Johnston, J. Biol. Chem. 120, 499 (1937).Google Scholar
  99. 99.
    G. A. D. Haslewood and V. Wootton, Biochem. J. 47, 584 (1950).PubMedGoogle Scholar
  100. 100.
    R. B. Moffett and W. M. Hoehn, J. Am. Chem. Soc. 69, 1995 (1947).Google Scholar
  101. 101.
    T. F. Gallagher and J. R. Xenos, J. Biol. Chem. 165, 365 (1946).PubMedGoogle Scholar
  102. 102.
    P. Latschinoff, Ber. 20, 1043 (1887).Google Scholar
  103. 103.
    Lassar-Cohn, Ber. 26, 146 (1893).Google Scholar
  104. 104.
    Lassar-Cohn, Z. Physiol. Chem. 17, 607 (1893).Google Scholar
  105. 105.
    S. Lindstedt and J. Sjövall, Acta Chem. Scand. 11, 421 (1957).Google Scholar
  106. 106.
    O. W. Portman, Arch. Biochem. Biophys. 78, 125 (1958).Google Scholar
  107. 107.
    S. Okamura and T. Okamura, Z. Physiol. Chem. 188, 11 (1930).Google Scholar
  108. 108.
    S. Bergström, H. Danielsson, and B. Samuelsson, in “Lipide Metabolism” (K. Bloch, ed.), p. 291, Wiley, New York (1960).Google Scholar
  109. 109.
    S. Bergström, M. Rottenberg, and J. Sjövall, Z. Physiol. Chem. 295, 278 (1953).Google Scholar
  110. 110.
    T. A. Mahowald, J. T. Matschiner, S. L. Hsia, R. Richter, E. A. Doisy, Jr., W. H. Elliott, and E. A. Doisy, J. Biol. Chem. 225, 781 (1957).PubMedGoogle Scholar
  111. 111.
    J. B. Carey, Jr., and C. J. Watson, J. Biol. Chem. 216, 847 (1955).Google Scholar
  112. 112.
    F. C. Chang, N. F. Wood, and W. G. Holton, J. Org. Chem. 30, 1718 (1965).PubMedGoogle Scholar
  113. 113.
    O. Rosenheim and H. King, Chem. Ind. 51, 954 (1932).Google Scholar
  114. 114.
    H. Wieland and E. Dane, Z. Physiol. Chem. 210, 268 (1932).Google Scholar
  115. 115.
    M. Jenke and F. Bandow, Z. Physiol. Chem. 249, 16 (1937).Google Scholar
  116. 116.
    J. T. Matschiner, T. A. Mahowald, S. L. Hsia, E. A. Doisy, Jr., W. H. Elliott, and E. A. Doisy, J. Biol. Chem. 225, 803 (1957).PubMedGoogle Scholar
  117. 117.
    A. Kuksis, J. Am. Oil Chemists’ Soc. 42, 276 (1965).Google Scholar
  118. 118.
    B. Samuelsson, Acta Chem. Scand. 14, 17 (1960).Google Scholar
  119. 119.
    J. G. Hamilton, Arch. Biochem. Biophys. 101, 7 (1963).Google Scholar
  120. 120.
    A. Norman and J. Sjövall, J. Biol. Chem. 233, 872 (1958).PubMedGoogle Scholar
  121. 121.
    P. Eneroth, B. Gordon, and J. Sjövall, J. Lipid Res. 7, 524 (1966).PubMedGoogle Scholar
  122. 122.
    J. Sjövall, Acta Chem. Scand. 13, 711 (1959).Google Scholar
  123. 123.
    G. A. D. Haslewood, Biochem. J. 56, 10 (1954).Google Scholar
  124. 124.
    G. A. D. Haslewood and J. Sjövall, Biochem. J. 57, 126 (1954).PubMedGoogle Scholar
  125. 125.
    G. A. D. Haslewood, Biochem. J. 62, 637 (1956).Google Scholar
  126. 126.
    P. Ziegler, Can. J. Chem. 34, 523 (1956).Google Scholar
  127. 127.
    P. Ziegler, Can. J. Chem. 34, 1528 (1956).Google Scholar
  128. 128.
    S. L. Hsia, J. T. Matschiner, T. A. Mahowald, W. H. Elliott, E. A. Doisy, Jr., S. A. Thayer, and E. A. Doisy, J. Biol. Chem. 226, 667 (1958).Google Scholar
  129. 129.
    S. L. Hsia, W. H. Elliott, J. T. Matschiner, E. A. Doisy, Jr., S. A. Thayer, and E. A. Doisy, J. Biol. Chem. 233, 1337 (1958).PubMedGoogle Scholar
  130. 130.
    S. L. Hsia, J. T. Matschiner, T. A. Mahowald, W. H. Elliott, E. A. Doisy, Jr., S. A. Thayer, and E. A. Doisy, J. Biol. Chem. 230, 573 (1958).PubMedGoogle Scholar
  131. 131.
    T. A. Mahowald, J. T. Matschiner, S. L. Hsia, E. A. Doisy, Jr., W. H. Elliott, and E. A. Doisy, J. Biol. Chem. 225, 795 (1957).PubMedGoogle Scholar
  132. 132.
    G. A. D. Haslewood and V. M. Wootton, Biochem. J. 49, 67 (1951).PubMedGoogle Scholar
  133. 133.
    G. A. D. Haslewood, Biochem. J. 49, 718 (1951).Google Scholar
  134. 134.
    W. Klyne and W. M. Stokes, J. Chem. Soc. 1954, 1979.Google Scholar
  135. 135.
    S. Bergström, H. Danielsson, and T. Kazuno, J. Biol. Chem. 235, 983 (1960).PubMedGoogle Scholar
  136. 136.
    G. A. D. Haslewood, Biochem. J. 78, 352 (1961).Google Scholar
  137. 137.
    O. Hammarsten, Z. Physiol. Chem. 61, 454 (1909).Google Scholar
  138. 138.
    O. Hammarsten, Z. Physiol. Chem. 68, 109 (1910).Google Scholar
  139. 139.
    A. Windaus and A. van Schoor, Z. Physiol. Chem. 173, 312 (1928).Google Scholar
  140. 140.
    S. Bergström, L. Krabisch, and U. G. Lindeberg, Acta Soc. Med. Upsalien. 64, 160 (1959).Google Scholar
  141. 141.
    W. Borsche and F. Hallwass, Ber. 55, 3324 (1923).Google Scholar
  142. 142.
    E. Hauser, E. Baumgartner, and K. Meyer, Hell . Chim. Acta 43, 1595 (1960).Google Scholar
  143. 143.
    K. Yamasaki and K. Kyogoku, Z. Physiol. Chem. 233, 29 (1935).Google Scholar
  144. 144.
    E. Fernholz, Z. Physiol. Chem. 232, 202 (1935).Google Scholar
  145. 145.
    H. Wieland and E. Dane, Z. Physiol. Chem. 212, 41 (1932).Google Scholar
  146. 146.
    I. Imai, Z. Physiol. Chem. 248, 65 (1937).Google Scholar
  147. 147.
    P. Brigl and O. Benedict, Z. Physiol. Chem. 220, 106 (1933).Google Scholar
  148. 148.
    T. Kazuno and T. Takuma, J. Japan Biochem. Soc. 19, 14 (1947).Google Scholar
  149. 149.
    G. A. D. Haslewood, Biochem. J. 56, 581 (1954).Google Scholar
  150. 150.
    L. F. Fieser and S. Rajagopalan, J. Am. Chem. Soc. 72, 5530 (1950).Google Scholar
  151. 151.
    E. Schwenk, B. Riegel, R. B. Moffett, and E. Stahl, J. Am. Chem. Soc. 65, 549 (1943).Google Scholar
  152. 152.
    P. Weyland, dissertation, Munich, 1920, p. 46; cited in Wieland and Kishi (36).Google Scholar
  153. 153.
    K. Kaziro and T. Shimada, Z. Physiol. Chem. 249, 220 (1937).Google Scholar
  154. 154.
    B. F. McKenzie, V. R. Mattox, L. L. Engel, and E. C. Kendall, J. Biol. Chem. 173, 271 (1948).PubMedGoogle Scholar
  155. 155.
    K. Kyogoku, Z. Physiol. Chem. 246, 99 (1937).Google Scholar
  156. 156.
    H. Wieland and E. Boersch, Z. Physiol. Chem. 106, 190 (1919).Google Scholar
  157. 157.
    G. A. D. Haslewood, Biochem. J. 40, 52 (1946).Google Scholar
  158. 158.
    G. A. D. Haslewood, Biochem. J. 38, 108 (1944).Google Scholar
  159. 159.
    T. S. Sihn, J. Biochem. 27, 425 (1938).Google Scholar
  160. 160.
    M. Kuroda and H. Arata, J. Biochem. 39, 225 (1952).Google Scholar
  161. 161.
    H. S. Wiggins and I. D. P. Wootton, Biochem. J. 70, 349 (1958).PubMedGoogle Scholar
  162. 162.
    L. F. Fieser and S. Rajagopalan, J. Am. Chem. Soc. 71, 3935 (1949).Google Scholar
  163. 163.
    H. Wieland and W. Kapitel, Z. Physiol. Chem. 212, 269 (1932).Google Scholar
  164. 164.
    H. S. Wiggins, Biochem. J. 60, 10 (1955).Google Scholar
  165. 165.
    I. G. Anderson and G. A. D. Haslewood, Biochem. J. 85, 236 (1962).PubMedGoogle Scholar
  166. 166.
    K. Ohta, Z. Physiol. Chem. 259, 53 (1939).Google Scholar
  167. 167.
    M. N. Mitra and W. H. Elliott, J. Org. Chem. 33, 175 (1968).PubMedGoogle Scholar
  168. 168.
    A. F. Hofmann and E. H. Mosbach, J. Biol. Chem. 239, 2813 (1964).PubMedGoogle Scholar
  169. 169.
    P. D. G. Dean and M. W. Whitehouse, Biochem. J. 99, 9P (1966).Google Scholar
  170. 170.
    J. B. Carey, Jr., 1. D. Wilson, F. G. Zaki, and R. F. Hanson, Medicine 45, 461 (1966).PubMedGoogle Scholar
  171. 171.
    P. D. G. Dean and R. T. Aplin, Steroids 8, 565 (1966).PubMedGoogle Scholar
  172. 172.
    R. J. Bridgwater, Biochem. J. 64, 593 (1956).Google Scholar
  173. 173.
    Y. Kurauti and T. Kazuno, Z. Physiol. Chem. 262, 53 (1939).Google Scholar
  174. 174.
    H. Mabuti, J. Biochem. 33, 117 (1941).Google Scholar
  175. 175.
    G. A. D. Haslewood, Biochem. J. 52, 583 (1952).Google Scholar
  176. 176.
    P. P. Shah, E. Staple, and J. L. Rabinowitz, Arch. Biochem. Biophys. 123, 427 (1968).PubMedGoogle Scholar
  177. 177.
    E. Staple and J. L. Rabinowitz, Biochim. Biophys. Acta 59, 735 (1962).PubMedGoogle Scholar
  178. 178.
    J. B. Carey, Jr., and G. A. D. Haslewood, J. Biol. Chem. 238, PC855 (1963).Google Scholar
  179. 179.
    P. P. Shah, E. Staple, I. L. Shapiro, and D. Kritchevsky, Lipids 4, 82 (1969).PubMedGoogle Scholar
  180. 180.
    K. Okuda, M. G. Horning, and E. C. Horning, Proc. 7th Intern. Congr. Biochem., Science Council of Japan, Tokyo, Vol. IV, p. 721 (1967).Google Scholar
  181. 181.
    S. Hayakawa, Proc. Japan Acad. 29, 279 (1953).Google Scholar
  182. 182.
    S. Hayakawa, Proc. Japan Acad. 29, 285 (1953).Google Scholar
  183. 183.
    B. G. Collings and G. A. D. Haslewood, Biochem. J. 99, 50P (1966).Google Scholar
  184. 184.
    Y. Inai, Y. Tanaka, S. Betsuki, and T. Kazuno, J. Biochem. 56, 591 (1964).PubMedGoogle Scholar
  185. 185.
    T. Masui and E. Staple, J. Biol. Chem. 241, 3889 (1966).PubMedGoogle Scholar
  186. 186.
    K. Yamasaki and M. Yuuki, Z. Physiol. Chem. 24, 173 (1936).Google Scholar
  187. 187.
    T. Kanemitu, J. Biochem. 35, 155 (1942).Google Scholar
  188. 188.
    T. Kanemitu, J. Biochem. 35, 173 (1942).Google Scholar
  189. 189.
    K. Amimoto, T. Hoshita, and T. Kazuno, J. Biochem. 57, 565 (1965).PubMedGoogle Scholar
  190. 190.
    T. Shimizu and T. Oda, Z. Physiol. Chem. 227, 74 (1934).Google Scholar
  191. 191.
    T. Shimizu and T. Kazuno, Z. Physiol. Chem. 239, 67 (1936).Google Scholar
  192. 192.
    T. Shimizu and T. Kazuno, Z. Physiol. Chem. 239, 74 (1936).Google Scholar
  193. 193.
    T. Hoshita, K. Okuda, and T. Kazuno, J. Biochem. 61, 756 (1967).PubMedGoogle Scholar
  194. 194.
    T. Hoshita, T. Sasaki, Y. Tanaka, S. Betsuki, and T. Kazuno, J. Biochem. 57, 751 (1965).PubMedGoogle Scholar
  195. 195.
    K. Morimoto, Hiroshima J. Med. Sci. 15, 145 (1966).PubMedGoogle Scholar
  196. 196.
    G. A. D. Haslewood and L. Tökés, Biochem. J. 107, 6P (1968).Google Scholar
  197. 197.
    G. A. D. Haslewood and L. Tökés, Biochem. J. 114, 179 (1969).PubMedGoogle Scholar
  198. 198.
    G. A. D. Haslewood, Biochem. J. 90, 309 (1964).Google Scholar
  199. 199.
    G. A. D. Haslewood, Biochem. J. 51, 139 (1952).Google Scholar
  200. 200.
    T. Kazuno, T. Masui, T. Nakagawa, and K. Okuda, J. Biochem. 53, 331 (1963).PubMedGoogle Scholar
  201. 201.
    T. Masui, J. Biochem. 49, 211 (1961).PubMedGoogle Scholar
  202. 202.
    S. Betsuki, J. Biochem. 60, 411 (1966).PubMedGoogle Scholar
  203. 203.
    H. Danielsson and T. Kazuno, Acta Chem. Scand. 18, 1157 (1964).Google Scholar
  204. 204.
    R. J. Bridgwater, T. Briggs, and G. A. D. Haslewood, Biochem. J. 82, 285 (1962).PubMedGoogle Scholar
  205. 205.
    O. Hammarsten, Z. Physiol. Chem. 24, 322 (1898).Google Scholar
  206. 206.
    A. D. Cross, Proc. Chem. Soc. (London) 1960, 344.Google Scholar
  207. 207.
    A. D. Cross, J. Chem. Soc. 1961, 2817.Google Scholar
  208. 208.
    T. Briggs and G. A. D. Haslewood, Biochem. J. 79, 5P (1961).Google Scholar
  209. 209.
    G. A. D. Haslewood, Biochem. Soc. Symp. (Cambridge, Engl.) 6, 83 (1951).Google Scholar
  210. 210.
    H. Ashikari, J. Biochem. 29, 319 (1939).Google Scholar
  211. 211.
    W. Bergmann and W. T. Pace, J. Am. Chem. Soc. 65, 477 (1943).Google Scholar
  212. 212.
    A. Windaus, W. Bergmann, and G. König, Z. Physiol. Chem. 189, 148 (1930).Google Scholar
  213. 213.
    R. J. Bridgwater, G. A. D. Haslewood, and J. R. Watt, Biochem. J. 87, 28 (1963).PubMedGoogle Scholar
  214. 214.
    K. Okuda, S. Enomoto, K. Morimoto, and T. Kazuno, J. Biochem. 51, 441 (1962).PubMedGoogle Scholar
  215. 215.
    M. Kouchi, Hiroshima J. Med. Sci. 13, 341 (1964).Google Scholar
  216. 216.
    K. Okuda, T. Hoshita, and T. Kazuno, J. Biochem. 51, 48 (1962).PubMedGoogle Scholar
  217. 217.
    T. Kazuno, Z. Physiol. Chem. 266, 11 (1940).Google Scholar
  218. 218.
    T. Hoshita, J. Biochem. 52, 176 (1962).PubMedGoogle Scholar
  219. 219.
    T. Hoshita, S. Nagayoshi, M. Kouchi, and T. Kazuno, J. Biochem. 56, 177 (1964).PubMedGoogle Scholar
  220. 220.
    G. A. D. Haslewood, Biochem. J. 59, xi (1955).Google Scholar
  221. 221.
    T. Hoshita, S. Nagayoshi, and T. Kazuno, J. Biochem. 54, 369 (1963).PubMedGoogle Scholar
  222. 222.
    I. G. Anderson, T. Briggs, and G. A. D. Haslewood, Biochem. J. 90, 303 (1964).PubMedGoogle Scholar
  223. 223.
    G. A. D. Haslewood and A. R. Tammar, Biochem. J. 108, 263 (1968).PubMedGoogle Scholar
  224. 224.
    T. Kazuno, S. Betsuki, Y. Tanaka, and T. Hoshita, J. Biochem. 58, 243 (1965).PubMedGoogle Scholar
  225. 225.
    T. Hoshita, M. Yukawa, and T. Kazuno, Steroids 4, 569 (1964).Google Scholar
  226. 226.
    T. Hoshita, M. Kouchi, and T. Kazuno, J. Biochem. 53, 291 (1963).PubMedGoogle Scholar
  227. 227.
    I. G. Anderson and G. A. D. Haslewood, Biochem. J. 93, 34 (1964).PubMedGoogle Scholar
  228. 228.
    T. Hoshita, T. Sasaki, and T. Kazuno, Steroids 5, 241 (1965).Google Scholar
  229. 229.
    H. Makino, Z. Physiol. Chem. 220, 49 (1933).Google Scholar
  230. 230.
    T. Hoshita, J. Biochem. 52, 125 (1962).PubMedGoogle Scholar
  231. 231.
    G. A. D. Haslewood, Biochem. J. 100, 233 (1966).Google Scholar
  232. 232.
    I. G. Anderson, G. A. D. Haslewood, A. D. Cross, and L. Tökés, Biochem. J. 104, 1061 (1967).PubMedGoogle Scholar
  233. 233.
    I. G. Anderson and G. A. D. Haslewood, Biochem. J. 112, 763 (1969).PubMedGoogle Scholar
  234. 234.
    J. L. Rabinowitz, R. H. Herman, D. Weinstein, and E. Staple, Arch. Biochem. Biophys. 114, 233 (1966).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • John T. Matschiner
    • 1
  1. 1.Department of BiochemistrySt. Louis University School of MedicineSt. LouisUSA

Personalised recommendations