Applications of Bioluminescence and Chemiluminescence

  • H. H. Seliger


Chemiluminescence (bioluminescence) arises from the excited states of products of an exothermic reaction. It is analogous to photoluminescence in that the individual excited molecular species are not in thermal equilibrium with their neighbors nor with the solvent molecules. Since relaxation to stable energy levels occurs at rates corresponding to vibrational collision frequencies (ca. 1012 sec−1) the negative free energy change in the chemical reaction leading to the electronically excited product must occur as a single step. During the lifetime of the excited state (ca. 10−9 sec) of the product molecule, non-luminescent pathways such as quenching (formation of non-fluorescent excimers), energy transfer to non-fluorescent acceptors and intramolecular radiationless deactivation may compete with the luminescent transition to the ground state. In general, three criteria must be satisfied simultaneously to achieve a sensible chemiluminescence. These are
$$- \Delta F \geqslant \frac{{hc}}{{{\lambda _m}}}$$
where ⋋ is the long wavelength limit for excitation of the product molecule and ∆F is the free energy change for the reaction.


Euphotic Zone Product Molecule Pulse Counting Chemiluminescent Reaction Luminous Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahnström, G. (1961) Acta Chem. Scand. 15: 463.Google Scholar
  2. Anonymous (1971) “Eutrophication in coastal waters:nitrogen as a controlling factor”, Water Pollution Control Research Series, 16010 EHC, 12 /71 67 pp.Google Scholar
  3. Ashby, G. (1961) J. Polymer Sci. 50: 99.Google Scholar
  4. Audubert, R. (1939) Trans. Farad. Sco. 35: 197–204.Google Scholar
  5. Barenboim, G. M., A. N. Domanskii and K. K. Turoverov (1969) Luminescence of Biopolymers and Cells Plenum Press, N.Y. 229 p.Google Scholar
  6. Birks, J. B. (1953) Scintillation Counters McGraw Hill, N. Y., 148 p.Google Scholar
  7. Birks, J. B. (1964) The Theory and Practice of Scintillation Counting MacMillan Co., N. Y. 662 p.Google Scholar
  8. Breitenberger, E. (1955) in Prog. Nuclear Phys. (Ed.,0. R. Frisch) 4:56.Google Scholar
  9. Bun-Hoi, N. P. and S. S. Sung (1970) Naturwissen. 57:135.Google Scholar
  10. Chappelle, E. W. and G. V. Levin (1968) Biochem. Medicine 2: 41–52.Google Scholar
  11. Chappelle, E. W., G. L. Picciolo and R. H. Altland (1967) Biochem. Medicine 1: 252–260.Google Scholar
  12. Cole, H. A., J7 W. T. Wimpenny and D. E. Hughes (1967) Biochim. Biophys. Acta 143: 445–453.Google Scholar
  13. Coombs, J., P. J. Halicki, 0. Holm-Hansen and B. E. Volcani (1967) Exper. Cell Research 47: 315–328.Google Scholar
  14. Dawes, E. A. and P. J. Large (1970) J. Gen. Microbiol. 60: 31–40.Google Scholar
  15. D’Eustachio, A. J. and G. V. Levin (1967) Bacterolog. Proc. Abstract.Google Scholar
  16. Dubois, R. (1914) La Vie at La Lumiere, Libraire Felix Alcan, Paris 338 p.Google Scholar
  17. Fontijn, A., D. Golomb and J. A. Hodgeson (1972) Int. Symp. Chemilum., Athens, Ga.Google Scholar
  18. Forrest, W. W. (1965) J. Bacteriol. 90: 1013–1016.Google Scholar
  19. Hamilton, R. D. and 0. Holm-Hansen (1967) Limnol. Oceanog. 12: 319–324.Google Scholar
  20. Harvey, E. N. (1952) Bioluminescence, Academic Press, N. Y. 649 p. Harvey, E. N. (1957) A History of Luminescence, Amer. Phil. Soc., Phila., Pa. 692 p.Google Scholar
  21. Hastings, J. W., G. Mitchell, P. H. Mattingtly, J. R. Blinks and M. Van Leeuwen (1969) Nature 222:1047–1050.Google Scholar
  22. Hastings, J. W., T. Baldwin, A. Eberhard, M. N. Nicoli, T. Cline and K. Nealson (1972) Int. Conf. Chemilum., Athens, Ga. Holm-Hansen, 0. (1969) Limnol. Oceanogr. 14: 740–747.Google Scholar
  23. Holm-Hansen, 0. (1970) Plant and Cell Physiol. 11:689–700.Google Scholar
  24. Holm-Hansen, 0. (1971) Symposium on Estuarine Microbiology, Columbia, S. C. (USCD 10P20–107).Google Scholar
  25. Holm-Hansen, 0. (1972) U. Calif. San Diego Report 10P20–124.Google Scholar
  26. Holm-Hansen, 0. and C. R. Booth (1966) Limnol. Oceanogr. 11: 510–519.Google Scholar
  27. Johnson, F. H. (1948) Scientific Monthly 67:225–235.Google Scholar
  28. Jones, P. C. T. (1969) J. Cell Physiol. 73: 37–42.Google Scholar
  29. Kelly, D. P. and P. J. Syrett (1966) J. Gen. Microbiol. 43: 109–118.Google Scholar
  30. Konev, S. V., N. A. Troitsky and M. A. Katibnikov (1961) V. Internat. Biochem. Congr. Tfi.oscow.Google Scholar
  31. Lamola, A.A. (1971) Biochem. Biophys. Res. Commun. 43:893. Lee, J. (1972) Biochemistry 11: 3350–3359.Google Scholar
  32. Lee, J. and H. H. Seliger (1965) Photochem. Photobiol. 4: 1015–1048.Google Scholar
  33. Lee, J. and H. H. Seliger (1970) Photochem. Photobiol. 11: 247–258.Google Scholar
  34. Lee, J. and H. H. Seliger (1972) Photochem. Photobiol. 15: 227.Google Scholar
  35. Levin, G. V., E. Usdin and A. R. Slonim (1968) Aerospace Med. 39:14.Google Scholar
  36. Loftus, M. E., S. V. Rao and H. H. Seliger (1972) Ches. Sci., in press.Google Scholar
  37. McElroy, W. D., H. H. Seliger and E. White (1969) Photochem. Photobiol. 10: 153–170.Google Scholar
  38. Nilsson, R. (1964) Acta Chem. Scand. 18: 389–401.Google Scholar
  39. Nilsson, R. (1969) Biochim. Biophys. Acta 184: 237–251.Google Scholar
  40. Parsons, T. R., K. Stephens and J. D. H. Strickland (1961) “On theGoogle Scholar
  41. chemical composition of eleven species of marine pbytoplankters“Google Scholar
  42. J. Fish. Res. Bd. Canada 18:1001–1016Google Scholar
  43. Pettrus, J. A., Jr. and R. E. Moore (1970) Chem. Commun. 1093. Rauhut, M. M. ( 1972 ) Int. Conf. Chemilum., Athens, Ga.Google Scholar
  44. Ridgway, E. B. and C. C. Ashley (1967) Biochem. Biophys. Res. Commun.Google Scholar
  45. 29:229–234.Google Scholar
  46. Robben, F. (1971) Appl. Optics 10: 776–796.Google Scholar
  47. Seitz, W. R. and D. M. Hercules (1972) Int. Symp. Chemilum., Athens, Ga.Google Scholar
  48. Seliger, H. H. and W. D. McElroy (1959) Biochem. Biophys. Res. Commun. 1: 21.Google Scholar
  49. Seliger, H. H and W. D. McElroy (1960) Arch. Biochem. Biophys. 88: 136.Google Scholar
  50. Seliger, H. H. and W. D. McElroy (1965) Light: Physical and Biological Action, Academic Press, N. Y. 417 p.Google Scholar
  51. Serat, W. F., F. E. Budinger and P. K. Mueller (1965) AIHL Report No. 14, State of California Dept. of Public Health.Google Scholar
  52. Shimomura, O., F. H. Johnson and Y. Saiga (1962) J. Cell Comp. Physiol. 59: 223.Google Scholar
  53. Shimomura, O., F. H. Johnson and Y. Saiga (1963a) J. Cell Comp. Physiol. 62: 1.Google Scholar
  54. Shimomura, 0.,H. Johnson and Y. Saiga (1963b) “Microdetermina-tion of calcium by aequorin luminescence” Science 140: 1339.Google Scholar
  55. Shlyapintokh, V. Y., R. F. Vassil’ev, 0. N. Karpukhin, L. M.Google Scholar
  56. Postnikov and L. A. Kibalko (1960) J. Chaim. Phys. 57: 1113.Google Scholar
  57. Shlyapintokh, V. Y., 0. N. Karpukhin, L. M. Postnikov, V. F. Tsepalov, A. A. Vichutinskii and I. V. Zakharov (1968) Chemi-luminescence Techniques in Chemical Reactions, Consultants Bureau, N. Y. 222 p.Google Scholar
  58. Stanley, P. E. (1971) Anal. Biochem. 39: 441.Google Scholar
  59. Stanley, P. E. and S. G. Williams (1969) Anal. Biochem. 29:381. Statff, J. and J. Ostrowski (1967) Z. fur Naturforsch. 22b:734-Google Scholar
  60. Stauff, J. and G. Rúmmler (1962) Z. Phys. Chem. N. F. 34: 67.Google Scholar
  61. Stauff, J., H. Schmidkunz and G. Hartman (1963) Nature 198:281-Google Scholar
  62. Steele, R. H. (1963) Biochemistry 2:529.Google Scholar
  63. Sutcliffe, W. H., E. A. Orr and 0.-Holm-Hansen (1972) U. Calif. San Diego Report 10P20–110.Google Scholar
  64. Syrett, P. J. (1958) Arch. Biochem. Biophys. 75: 117–124.Google Scholar
  65. Trautz, M. (1905) Z. Phys. Chem. 53: 1.Google Scholar
  66. Trautz, M. and P. P. Shorygin (1905) Z. wissensch. Photogr. Photophys. Photochem. 3: 121.Google Scholar
  67. Vassil’ev, R. F. (1962) “Secondary processes in chemiluminescent solutions” Nature 196: 668.Google Scholar
  68. Vassil’ev, R. F. (1967) Prog. Reaction Kinetics 4: 305–352.Google Scholar
  69. Vassil’ev, R. F., 0. N. Karpukhin and V. Y. Shlyapintokh (1959) Dokl. Acad. Nauk. SSSR 125: 106–109.Google Scholar
  70. Vassil’ev, R. F., A. A. Vichutupkii and A. S. Cherasov (1963) Dokl. Acad. Nauk. SSR 149: 124.Google Scholar
  71. Wang, C. H. and D. L. Willis (1965) Radiotracer Methodology in Biological Science Prentice Hall, N. J. 382 p.Google Scholar
  72. White, E. H., E. Rapaport, H. H. Seliger and T. A. Hopkins (1971) Bioorganic Chem. 1:92–122.Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • H. H. Seliger
    • 1
  1. 1.McCollum-Pratt Institute and Department of BiologyThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations