Advertisement

Chemiluminescence from Radical Ion Recombination VI. Reactions, Yields, and Energies

  • A. Weller
  • K. Zachariasse

Abstract

Our studies [1 – 8] of chemiluminescent radical ion recombination reactions of the general type
$${}^2{A^ - } + {}^2{D^ + } \to A + D + h\nu $$
(1)
were initiated by the question whether singlet heteroexcimers, 1(AD+), can be formed from the corresponding radical ions in their doublet ground states. The results obtained with more than 170 different A,D-systems [6] revealed however that electron transfer processes leading to molecular excited states of A and/or D are effectively competing with direct hetero-excimer formation and that subsequent reactions such as triplet-triplet annihilation [1 – 3]
$${}^3\mathop A\limits^* + {}^3\mathop A\limits^* \to {}^1\mathop A\limits^* + A$$
(2)
$${}^3\mathop D\limits^* + {}^3\mathop D\limits^* \to {}^1\mathop D\limits^* + D$$
(3)
$${}^3\mathop A\limits^* + {}^3\mathop D\limits^* \to {}^1\left( {{A^ - }{D^ + }} \right)$$
(4)
and hetero-excimer dissociation [5 – 8]
$${}^1\left( {{A^ - }{D^ + }} \right) \to {}^1\mathop A\limits^* + D$$
(5)
$${}^1\left( {{A^ - }{D^ + }} \right) \to A + {}^1\mathop D\limits^* $$
(6)
leading, with the yield γd to the lowest molecular excited singlet state of the A,D-system have to be taken into account.

Keywords

Free Energy Difference Encounter Complex Doublet Ground State Ether Solvent Molecular Excited State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    A. WELLER and K. ZACHARIASSE, J.Chem.Phys. 46 (1967) 4984 (part I of the series on chemiluminescence from radical ion recombination).Google Scholar
  2. [2]
    A. WELLER and K. ZACHARIASSE, in: Molecular Luminescence (E.C. Lim ed.) W.A. Benjamin Inc., New York (1969) p. 895 (Part II).Google Scholar
  3. [3]
    A. WELT,FR and K. ZACHARIASSE, Chem.Phys.Letters, 10 (1971) 197 (part III).Google Scholar
  4. [4]
    A. WELLER and K. ZACHARIASSE, Chem.Phys.Letters, 10 (1971) 424 (part IV).Google Scholar
  5. [5]
    A. WELLER and K. ZACHARIASSE, Chem.Phys.Letters, 10 (1971) 590 (part V).Google Scholar
  6. [6]
    K. ZACHARIASSE, thesis, Free University, Amsterdam (1972)Google Scholar
  7. [7]
    A. WELLER and K. ZACHARIASSE, subsequent paper (part VII).Google Scholar
  8. [8]
    A. WELLER and K. ZACHARIASSE, J.Lumin. in print (part VIII).Google Scholar
  9. [9]
    H. SCHOMBURG, H. STAERK and A. WELLER, unpublished resultsGoogle Scholar
  10. [10]
    H. KNIBBE, D. REHM and A. WELLER, Ber.Bunsenges. physik.Chem. 73 (1969) 839 and unpublished results.Google Scholar
  11. [11]
    H. BEENS and A. WELLER, Acta Phys. Polon. 34 (1968) 593.Google Scholar
  12. [12]
    D. REHM and A. WELLER, Z.physik.Chem. NF, 69 (1970) 183.CrossRefGoogle Scholar
  13. [13]
    H. BEENS, H. KNIBBE and A. WELLER, J.Chem.Phys. 47 (1967) 1183 and unpublished resultsGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • A. Weller
    • 1
  • K. Zachariasse
    • 1
  1. 1.Abt. SpektroskopieMax-Planck-Institut für biophysikalische ChemieGöttingenGermany

Personalised recommendations