Advertisement

The Effects of Ethanol on Tryptophan Pyrrolase Activity and Their Comparison with Those of Phenobarbitone and Morphine

  • A. A.-B. Badawy
  • M. Evans
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 59)

Abstract

Tryptophan pyrrolase (L-tryptophan-O2 oxidoreductase EC 1.13.11.11) is the first and rate-limiting haem-dependent enzyme of the hepatic kynurenine-nicotinic acid pathway of tryptophan degradation. The importance of this pathway to general body metabolism is evident from the fact that its end-products are the important redox cofactors NAD+ and NADP+. It is also important to the brain because, being the quantitatively most important of all the tryptophan metabolic pathways, its activity can determine the extent of the brain uptake of the amino acid precursor of 5-hydroxytryptamine (5-HT or serotonin), and there is evidence of an inverse relation between liver tryptophan pyrrolase activity and brain 5-HT concentration (Curzon, 1969). The role of 5-HT in the regulation of mood (Curzon, 1969; Lapin Oxenkrug, 1969), and its implication in the actions of alcohol have been previously discussed (Badawy Evans, 1973b).

Keywords

Palmitic Acid Chronic Ethanol Serum Free Fatty Acid Total Enzyme Activity Morphine Sulphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badawy, A. A.-B. Evans, M. (1972) Lancet, ii, 374–375Google Scholar
  2. Badawy, A. A.-B. Evans, M. (1973a) Biochem. Soc. Trans. 1, 193–195Google Scholar
  3. Badawy, A. A.-B. Evans, M. (1973b) Advan. Exp. Med. Biol. 35, 105–123CrossRefGoogle Scholar
  4. Badawy, A. A.-B. Evans, M. (1973c) Biochem. J. 133, 585–591Google Scholar
  5. Badawy, A. A.-B. Evans, M. (1973d) Biochem. J. 135, 555–557Google Scholar
  6. Badawy, A. A.-B. Evans, M. (1973e) Biochem. J. 136, 885–892Google Scholar
  7. Badawy, A. A.-B. Evans, M. (1974) Biochem. J. 138, 445–451Google Scholar
  8. Badawy, A. A.-B. Smith, M. J. H. (1971) Biochem. J. 123, 171–174Google Scholar
  9. Badawy, A. A.-B. Smith, M. J. H. (1972) Biochem.Pharmacol. 21, 97–101CrossRefGoogle Scholar
  10. Brodie, B. B., Butler, W. M. Jr., Horning, M. G., Maickel, R. P. Maling, H. M. (1961) Amer. J. Clin. Nutr. 9, 432–435Google Scholar
  11. Butcher, R. G. (1971) Biochem. J. 125, 22P - 23 PGoogle Scholar
  12. Butcher, R. W., Robison, G. A., Hardman, J. G. Sutherland, E. W. (1968) Advan. Enz. Regul. 6, 357–389CrossRefGoogle Scholar
  13. Cho-chung, Y. S. Pitot, H. C. (1967) J. Biol. Chem. 242, 1192–1198Google Scholar
  14. Curzon, G. (1969) Brit. J. Psychiat. 115, 1367–1374CrossRefGoogle Scholar
  15. Curzon, G., Friedel, J. Knott, P. J. (1973) Nature New Biol. 242, 198–200CrossRefGoogle Scholar
  16. Curzon, G. Knott, P. J. (1974) Brit. J. Pharmacol. 50, 197–204CrossRefGoogle Scholar
  17. De Matteis, F. (1972) Biochem. J. 130, 52P - 53 PGoogle Scholar
  18. Denkla, W. D. Dewey, H. K. (1967) J. Lab. Clin. Med. 69, 160–169Google Scholar
  19. Druyan, R. Kelly, A. (1972) Biochem. J. 129, 1095–1099Google Scholar
  20. Ellis, S., Anderson, H. L., Jr. Collins, M. (1953) Proc. Soc. Exp. Biol. Med. 84, 383–386CrossRefGoogle Scholar
  21. Feigelson, P. Greengard, 0. (1961) J. Biol. Chem. 236, 153–157Google Scholar
  22. Greengard, 0. Feigelson, P. (1961) J. Biol. Chem. 236, 158–161Google Scholar
  23. Kalant, H., Khanna, J. M. Loth, J. (1970) Can. J. Physiol. Pharmacol. 48, 542–549CrossRefGoogle Scholar
  24. Katz, J. Wals, P. A. (1970) J. Biol. Chem. 245, 2546–2548Google Scholar
  25. Lapin, I. P. Oxenkrug, G. F. (1969) Lancet, i, 132–136Google Scholar
  26. Lester, D., Keokosky, W. Z. Felzenberg, F. (1968) Q. J. Stud.Alochol, 29, 449–454Google Scholar
  27. Madras, B. K. Sourkes, T. L. (1968) Biochem. Pharmacol. 17, 1037 1047Google Scholar
  28. McArthur, J. N. Dawkins, P. D. (1969) J. Pharm. Pharmacol. 21, 744750Google Scholar
  29. McIntosh, D. A. D. Topham, J. C. (1972) Biochem. Pharmacol. 21, 1025–1029CrossRefGoogle Scholar
  30. Mikac-Devic, D.,Stankovic, H. Boskovic, K. (1973) Clin. Chim. Acta, 45, 55–59CrossRefGoogle Scholar
  31. MvSrland, J. (1974) Biochem. Pharmacol. 23, 21–35CrossRefGoogle Scholar
  32. MOrland, J., Christoffersen, T., Osnes, J. B., Seglen, P. 0. Jervell, K. F. (1972) Biochem. Pharmacol. 21, 1849–1859CrossRefGoogle Scholar
  33. Robison, G. A., Butcher, R. W. Sutherland, E. W. (1967) Ann. N. Y. Acad. Sci. 139, 703–723CrossRefGoogle Scholar
  34. Sardesai, V. M. Provido, H. S. (1972) Life Sci. 11, 1023–1028CrossRefGoogle Scholar
  35. Satyanarayana Rao, M. R., Malathi, K. Padmanaban, G. (1972) Biochem. J. 127, 553–559Google Scholar
  36. Schimke, R.T. (1969) Curr. Top. Cell. Regul. 1, 77–124Google Scholar
  37. Seifert, J. (1973) Toxicology, 1, 179–186CrossRefGoogle Scholar
  38. Shanley, B. C., Zail, S. S. Joubert, S. M. (1968) Lancet, i, 70–71Google Scholar
  39. Slater, T. F. (1972) in Free Radical Mechanisms in Tissue Injury (Lagnado, J. R., ed.) pp. 171–197, Pion Ltd., LondonGoogle Scholar
  40. Slater, T. F. Sawyer, B. (1962) Nature (Lend.) 193, 454–456CrossRefGoogle Scholar
  41. Slater, T. F., Sawyer, B. Straüli, U. (1964) Arch. Internat. Physiol. Biochim. 72, 427–447Google Scholar
  42. Smith, H. G. Lakatos, C. (1971) J. Pharm. Pharmacol. 23, 180–189CrossRefGoogle Scholar
  43. Tyrrell, D. L. J. Marks, G. S. (1972) Biochem. Pharmacol. 21, 2077–2093CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • A. A.-B. Badawy
    • 1
  • M. Evans
    • 1
  1. 1.Addiction Unit Research Laboratory, Whitchurch HospitalUniversity Hospital of WalesCardiffUK

Personalised recommendations