Skip to main content

Learning and Long-term Physiological Regulation

  • Chapter
Consciousness and Self-Regulation

Abstract

A complex animal is composed of many different semiautonomous homeostatic mechanisms, and compromises must frequently be negotiated to achieve and maintain a stable overall physiological state optimal for survival. As evidenced by general skeletal behavior (McFarland, 1971), the brain has the integrative capacity required to resolve competing demands of these mechanisms. However, the conception of the brain as a process control computer—receiving data from an array of critically placed transducers, comparing the measurements to established set points, and dispatching instructions under a fixed program to a network of switches, valves, and pumps—is, although an appealing analogy, not tenable in the light of available data. Critical physiological variables are regulated to within narrow limits for periods of weeks or even years. Feedback-stabilized electromechanical regulators, such as thermostats, can maintain steady-state conditions indefinitely, but to do so they employ physical sensors or transducers which remain calibrated indefinitely. In contrast all interoceptors adapt (Chernigovsky, 1960; Mount-castle, 1980; Widdicomb, 1974), and analogous biological control schemes using interoceptors as sensors could not maintain regulation for extended periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baum, W. M. (1974). On two types of deviation from the matching law: Bias and under-matching. Journal of the Experimental Analysis of Behavior, 22, 231–242.

    Article  PubMed  Google Scholar 

  • Chernigovsky, V. N. (1960). Interoceptors. Moscow: State Publishing House of Medical Literature.

    Google Scholar 

  • Delius, W., Hagbarth, K. E., Hongell, A., & Wallin, B. G. (1972). General characteristics of sympathetic activity in human muscle nerves. Acta Physiologica Scandinavica, 84, 6581.

    Google Scholar 

  • Diamond, J. (1955). Observations on the excitation by acetylcholine and by pressure of sensory receptors in the cat’s carotid sinus. Journal of Physiology, 130, 513–532.

    PubMed  Google Scholar 

  • Dworkin, B. R. (1984). Operant mechanisms in physiological regulation. In T. ELBERT, B. ROCKSTROH, W. Lutzenberger, & N. Birbaumer (Eds.), Self regulation of the brain and behavior. Berlin: Springer-Verlag, pp. 296–309.

    Chapter  Google Scholar 

  • Dworkin, B. R. (1980). The role of instrumental learning in the organization and maintenance of physiological control mechanisms. In G. ADAM, I. MESZAROS, & E. I. BANYAI (Eds.), Advances in physiological sciences: Brain and behavior (Vol. 17 ) Budapest: Akademiai Kiado, pp. 169–176.

    Google Scholar 

  • Dworkin, B. R., & Miller, N. E. (1977). Visceral learning in the curarized rat. In G. SCHWARTZ & J. BEAM’ (Eds.), Biofeedback: Theory and research. New York: Academic Press, pp. 221–242.

    Google Scholar 

  • Gilmore, J. P. (1983). Neural control of extracellular volume in the human and nonhuman primate. In J. T. Shepherd & F. M. Abboud (Eds.), The handbook of physiology: The cardiovascular system (Vol. 3, Sec. 2). Baltimore: Williams & Wilkins, pp. 885–915.

    Google Scholar 

  • Granger, H., & Guyton, A. C. (1969). Autoregulation of the total systemic circulation following distruction of the central nervous system in the dog. Circulation Research, 25, 379–388.

    Article  PubMed  Google Scholar 

  • Guyton, A. C. (1977). An overall analysis of cardiovascular regulation. Anesthesia and Analgesia, 56, 761–768.

    Article  PubMed  Google Scholar 

  • Guyton, A. C. (1982). Textbook of medical physiology (6th ed.). Philadelphia: W. B. Saunders. GUrroN, A. C., Coleman, T. G., & Granger, H. J. (1972). Circulation: Overall regulation. Annual Review of Physiology, 34, 13–46.

    Google Scholar 

  • Henriken, O. (1977). Local sympathetic reflex mechanism in regulation of blood flow in human subcutaneous tissue., Acta Physiologica Scandinavica, Suppl., I01, 1–48.

    Google Scholar 

  • Herrnstein, R. J. (1961). Relative and absolute strength of response as a function of frequency of reinforcement. Journal of the Experimental Analysis of Behavior, 4, 267–272.

    Article  PubMed  Google Scholar 

  • Johnson, P. C. (1964). Review of previous studies and current theories of autoregulation. Circulation Research (supplement 1 ), 15, 2–9.

    Google Scholar 

  • Lowenstein, W. R., & Skalak, R. (1966). Mechanical transmission in a pacinian corpuscle: An analysis and a theory. Journal of Physiology, 182, 346–378.

    Google Scholar 

  • Lowenstein, W. R., & Mendelson, M. (1965). Components of receptor adaptation in a pacinian corpuscle. Journal of Physiology, 177, 377–397.

    Google Scholar 

  • Mcfarland, D. J. (1971). Feedback mechanisms in animal behavior. London and New York: Academic Press.

    Google Scholar 

  • Mannard, A., & Polosa, C. (1973). Analysis of background firing of single sympathetic preganglionic neurons of cat cervical nerve. Journal of Neurophysiology, 36, 398–408.

    PubMed  Google Scholar 

  • Mifflin, S. W., & Kunze, D. L. (1982). Rapid resetting of low pressure vagal receptors in the superior vena cava of the rat. Circulation Research, 51, 241–249.

    Article  PubMed  Google Scholar 

  • Mirgorodsky, V. N., & Skok, V. I. (1969). Intracellular potentials recorded from a tonically active mammalian sympathetic ganglion. Brain Research, 15, 570–572.

    Article  PubMed  Google Scholar 

  • Morff, R. J., & Granger, H. J. (1982). Autoregulation of blood flow within individual arterioles in the rat cremaster muscle. Circulation Research, 51, 43–55.

    Article  PubMed  Google Scholar 

  • Mountcastle, V. (1980). Medical physiology ( 14th ed. ). St. Louis: Mosby.

    Google Scholar 

  • Polosa, C., Mannard, A., & Laskey, W. (1979). Tonic activity of the autonomic nervous system: Functions, properties, origins. In C. BROOKS, K. KOIzuMI, & A. SATO (Eds.), Integrative functions of the autonomic nervous system. Tokyo: University of Tokyo Press, pp. 342–354.

    Google Scholar 

  • Roddie, I. C. (1983). Circulation to skin and adipose tissue. In J. T. SHEPHERD & F. M. ABBOUD (Eds.), The handbook of physiology: The cardiovascular system (Vol. 3, sec. 2). Baltimore: Williams & Wilkins, pp. 397–452.

    Google Scholar 

  • Rothe, C. F. (1983). Venous system: Physiology of the capacitance vessels. In J. T. SHEPHERD & F. M. ABBOUD (Eds.), The handbook of physiology: The cardiovascular system (Vol. 3, sec. 2). Baltimore: Williams & Wilkins, pp. 285–317.

    Google Scholar 

  • Rothe, C. F. (1976). Reflex vascular capacity reduction in the dog. Circulation Research, 39, 705–710.

    Article  PubMed  Google Scholar 

  • Sagawa, K. (1983). Baroreflex control of systemic arterial pressure and vascular bed. In J. T. SHEPHERD & F. M. ABBOUD (Eds.), The handbook of physiology: The cardiovascular system (vol. 3, sec. 2). Baltimore: Williams & Wilkins, pp. 453–496.

    Google Scholar 

  • Satinoff, E. (1978). Neural organization and evolution of thermal regulation in mammals. Science, 201, 16–22.

    Article  PubMed  Google Scholar 

  • Schad, H., & Seller, H. (1975). A method for recording autonomic nerve activity in un-anesthetized, freely moving cats. Brain Research, 100, 425–430.

    Article  PubMed  Google Scholar 

  • Shepherd, J. T. (1983). Circulation to skeletal muscle. In J. T. SHEPHERD & F. M. ABBOUD (Eds.), The handbook of physiology: The cardiovascular system (Vol. 3, sec. 2). Baltimore: Williams & Wilkins, pp. 319–370.

    Google Scholar 

  • Sibby, R., & Mcfarland, D. (1964). A state-space approach to motivation. In D. J. MCFAR- LAND (Ed.), Motivational control systems analysis. London: Academic Press, pp. 1–84.

    Google Scholar 

  • Weardon, J. H., & Burgess, I. S. (1982). Matching since Baum. Journal of the Experimental Analysis of Behavior, 38, 339–348.

    Article  Google Scholar 

  • Widdicomb, J. G. (1974). Enteroceptors. In J. J. HUBBARD (Ed.), The peripheral nervous system. New York: Plenum Press, pp. 455–485.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dworkin, B.R. (1986). Learning and Long-term Physiological Regulation. In: Davidson, R.J., Schwartz, G.E., Shapiro, D. (eds) Consciousness and Self-Regulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0629-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0629-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0631-4

  • Online ISBN: 978-1-4757-0629-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics