Advertisement

Fractal Dimensions in Coupled Map Lattices

  • A. Politi
  • G. D’Alessandro
  • A. Torcini
Part of the NATO ASI Series book series (NSSB, volume 208)

Abstract

The discovery of erratic behaviour in deterministic systems opened entirely new per­spectives in the comprehension of dynamical behaviour of nonlinear systems. The existence of broad-band spectra no longer necessarily requires a coupling with an external uncontrollable thermal bath. Chaos, providing an information flow from irrelevant to relevant digits, naturally transforms the indetermination on the initial condition into a seemingly stochastic behaviour in time domain [1]. New classes of indicators have been consequently introduced, which allow to distinguish between truly stochastic motion and low-dimensional chaotic behaviour: Lyapunov exponents, metric entropy and fractal dimensions are dynamical invariants which measure the degree of chaoticity [2].

Keywords

Fractal Dimension Lyapunov Exponent Minimal Resolution Empty Region Decimal Logarithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.D. Farmer, Z. Naturforsch. 37A, 1304 (1983)MathSciNetGoogle Scholar
  2. [2]
    J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985); R. Badii and A. Politi, in Instabilities and Chaos in Quantum Optics II, N.B. Abraham, F.T. Arecchi, and L.A. Lugiato eds. ( Plenum, New York, 1988 ), p. 335Google Scholar
  3. [3]
    K. Kaneko, Prog. Theor. Phys. 72, 480 (1984)MATHGoogle Scholar
  4. [4]
    Y. Pomeau, A. Pumir, and P. Pelce, J. Stat. Phys. 37, 39, (1984); J,-P. Eckmann and C. E. Wayne, J. Stat. Phys. 50, 853 (1988)CrossRefGoogle Scholar
  5. [5]
    F. Ledrappier, Commun. Math. Phys. 81, 229 (1981)MATHGoogle Scholar
  6. [6]
    R. Badii and A. Politi in Fractals in Physics, L. Pietronero and E. Tosatti eds., ( Elsevier, Amsterdam 1986 ), p. 453Google Scholar
  7. [7]
    A. Torcini, G. D’Alessandro, and A.Politi, in preparationGoogle Scholar
  8. [8]
    P. Grassberger, “Information content and predictability of lumped and distributed dynamical systems”, preprint, Wuppertal WB 87–8Google Scholar
  9. [9]
    G. Mayer-Kress and K. Kaneko, J. Stat. Phys. 54, 1489 (1989)MathSciNetCrossRefGoogle Scholar
  10. [10]
    L.A. Bunimovich and Ya G. Sinai, Nonlinearity 1, 491 (1989)CrossRefGoogle Scholar
  11. [11]
    P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983)MathSciNetCrossRefGoogle Scholar
  12. [12]
    R. Badii and A. Politi, Phys. Rev. Lett. 52, 1661 (1984)MathSciNetCrossRefGoogle Scholar
  13. [13]
    E. Ott., W. Withers, and J.A. Yorke, J. Stat. Phys. 36, 687 (1984)CrossRefGoogle Scholar
  14. [14]
    G. Mayer-Kress, in Directions in Chaos, Hao Bai-Lin ed. ( World Scientific, Singapore, 1987 )Google Scholar
  15. [15]
    J.-P. Eckmann and D. Ruelle, “Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems”, preprintGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. Politi
    • 1
  • G. D’Alessandro
    • 1
  • A. Torcini
    • 1
  1. 1.Istituto Nazionale di OtticaFirenzeItaly

Personalised recommendations