Defect-Induced Spatio-Temporal Chaos

  • P. Coullet
Part of the NATO ASI Series book series (NSSB, volume 208)


Systems with few degrees of freedom are well known for their propensity to develop chaos (Bergé et al., 1984). Quantitative characterization of such behavior relies upon the qualitative theory of differential equations (Arnold, 1980). Quantitative measures of chaos (Liapunov exponents, entropies, dimensions, etc.) are properties of mathematically well defined objects such as strange attractors (Guckhenheimer and Holmes, 1983).


Nematic Liquid Crystal Spiral Wave Phase Instability Optical Vortex Standing Wave Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. Arnold V.I., 1980, Chapitres Supplémentaires de la Théorie des Equations Différentielles Ordinaires, Mir, Moscou.MATHGoogle Scholar
  2. Blian R., Kléman, M. and Poirier, J.P., 1981, “Physics of Defects” North-Holland, Amsdterdam.Google Scholar
  3. Bejamin T.B. and Feir J.E., 1967, The Disintegration of Wave Trains on Deep Water. Part 1. Theory, J. Fluid Mech, 27: 417.CrossRefGoogle Scholar
  4. Bergé P., Pomeau Y. and Vidal Ch., 1984, “L’ordre in le Chaos, Hermann”, Paris.Google Scholar
  5. Bewersdorrf A., Borckmans P. and Müller S.C., 1988, “Chemical Pattern Formation in Fluid Sciences and Material Science in Space”, édité par H.U. Walter, Springer-Verlag, Berlin.Google Scholar
  6. Brand H.R., Lomdahl P.S. and Newell A.C., 1986, Phys. Lett 118A: 67.Google Scholar
  7. Chaté H. and Mannevile P., 1987, Spatio-temporal intermittency, Phys. Rev. Lett. 58: 112.CrossRefGoogle Scholar
  8. Coullet P., 1986, Commensurate-incommensurate transitions in nonequilibrium systems, Phys. Rev. Lett 56: 724.MathSciNetCrossRefGoogle Scholar
  9. Coullet P., Elphick C., Gil L. and Lega J., 1987, Topological Defects of Wave Patterns, Phys. Rev. Lett 59: 884.CrossRefGoogle Scholar
  10. Coullet P., Elphick, C., 1987, Topological Defects Dynamics and Melnikov’s Theory, Phys. Lett. 121A: 233.MathSciNetGoogle Scholar
  11. Coullet P., Elphick C. and Repaux D., 1987a, Nature of Spatial Chaos, Phys. Rev. Lett. 58: 431.MathSciNetCrossRefGoogle Scholar
  12. Coullet P. and Lega J., 1988, Defect-mediated Turbulence in Wave Patterns, Europhys. Lett 7: 511.CrossRefGoogle Scholar
  13. Coullet P., Gill L. and Lega J., 1988, A form of Turbulence Associated with Defects, to appear in physica D Google Scholar
  14. Coullet P., Gil L. and Lega J., 1989, Defect-mediated Turbulence, Phys. Rev. Lett. 62: 1619.CrossRefGoogle Scholar
  15. Coullet P., Gil L. and Rocca F., 1989a, Optical Vortices, to appear in Optics Communications.Google Scholar
  16. Coullet P., Lega J. and Walgraef D., 1989b, Defects at a Liftchitz point, preprint.Google Scholar
  17. De Gennes P.G., 1972, Dislocation coin dans un Smectique A, C.R.A.S.B. 275: 939.Google Scholar
  18. Dubois-Violette E., Guazzelli E. and Prost J., 1983, Dislocation Motion in Layered Structures, Phil. Mag. A 48: 727.CrossRefGoogle Scholar
  19. Gil L. and Lega J, 1988, “Defects in Waves, in Propagation in Systems far from Equilibrium”, edited by J.E. Wesfreid, H.R. Brand, P. Manneville, G. Albinand and N.Boccara, Springer-Verlag, Heidelberg, p. 164.Google Scholar
  20. Guckhenheimer, J. and Holmes P., 1983, “Nonlinear Oscillations, Dynamical Systems and Birfurcations of Vector Fields”, Springer-Verlag, Berlin.Google Scholar
  21. Guazzelli E., 1980, Nucléation Homogéne d’une Paire de Défauts in une Structure Convective Périodique, C.R.A.S., B 291: 9.Google Scholar
  22. Guazzelli E., Guyon E. and Wesfreid J.E., 1983, Dislocations in a roll Hydrodynamic Instability in Nematics: Static Limit, Phil. Mag. A 48: 709.CrossRefGoogle Scholar
  23. Hagan P.S., 1982, Spiral Waves in Reaction-diffusion Equations, SIAM J. Appl. Math. 42: 762.MathSciNetMATHCrossRefGoogle Scholar
  24. Joéts A. and Ribotta R., 1984, Electro-hydrodynamical Convective Structures and Transitions to Chaos in a Liquid Crystal, in “Cellular Structures in Instabilities”, edited by J.E. Wesfreid and S. Zaleski, Lecture Notes in Physics 210, Springer-Verlag, Berlin, p. 294.CrossRefGoogle Scholar
  25. Joëts A. and Ribotta R., 1989, Spatio-temporal grain boundaries, preprint,.Google Scholar
  26. Koppel N and Howard L., 1981, Targand Pattern and Spiral Solutions to Reaction-Diffusion Equations with more than One Space Dimension, Adv. in Appl. Math. 2: 417.MathSciNetCrossRefGoogle Scholar
  27. Kawasaki K. and Ohta T., 1983, Kink Dynamics in One-dimensional Nonlinear Systems, Physica. 116A: 573.MathSciNetGoogle Scholar
  28. Kawasaki K, 1984, Topological Defects and Non-equilibrium, Prog. Theor. Phys. Suppl. 79: 161.CrossRefGoogle Scholar
  29. Kuramoto Y. and Tsuzuki T., 1976, Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium, Prog. Theor. Phys. 55: 356.CrossRefGoogle Scholar
  30. Kuramoto Y., 1984, “Chemical Oscillations, Waves and Turbulence”, Springer Series in Synergetics, Vol 19, Springer, Berlin.Google Scholar
  31. Lega J., 1989, Forme Spirale de la Dislocation des Ondes Stationnaires, submitted to “Comptes Rendus de l’Académie des Sciences”.Google Scholar
  32. Lowe M and Gollub J., 1983, Phys. Rev A31:607.Google Scholar
  33. Mermin N.D., 1979, The Topological Theory of Defects in Ordered Media, Rev. Mod. Phys. 51: 591.MathSciNetCrossRefGoogle Scholar
  34. Müller S.C., Plesser T. and Hess B., 1987, Two-dimensional Spectrophotomandry of Spiral Wave Propagation in the Belousov-Zhabotinskii Reaction, Physira 24D: 87.Google Scholar
  35. Nasuno S., Sano M. and Sawada K., 1989, Phase waves in rectangular convective structure of nematic liquid crystal, to appear in J. of Phys. of Japan.Google Scholar
  36. Newell A.C., 1974, Envelope Equations, “Lectures in Applied Mathematics 15”, 157, Am. Math. Society, Providence.Google Scholar
  37. Oppo, J.L., These proceedings, 1989.Google Scholar
  38. Pocheau A. and Croquette V., 1984, Dislocation Motion: A Wavenumber selection Mechanism in Rayleigh-Bénard Convection, J. Physique 45: 35.CrossRefGoogle Scholar
  39. Pomeau Y., Zaleski S. and Manneville P., 1983, Dislocation Motion in Cellular Structures, Phys. Rev. A 27: 2710.MathSciNetCrossRefGoogle Scholar
  40. Pomeau Y. and Manneville P., 1979, Stability and Fluctuations of a Spatialy Periodic Convective Flow, J. Phys. Lett. 40: 609.MathSciNetCrossRefGoogle Scholar
  41. Ribotta R. and Joëts A., 1984, Defects and Interactions with the Structue in EHD Convection in Nematic Liquid Crystals, in “Cellular Structures in Instabilities”, edited by J.E. Wesfreid and S. Zaleski, Lecture Notes in Physics 210, Springer-Verlag, Berlin, p. 249.CrossRefGoogle Scholar
  42. Rehberg I., Resenat S. and Steinberg V., 1989, Traveling Waves and Defect-Initiated Turbulence in Electroconvecting Nematics, Phys. Rev. Lett. 62: 756.CrossRefGoogle Scholar
  43. Siggia E.D. and Zippelius A., 1981, Dynamics of Defects in Rayleigh-Bénard Convection, Phys Rev. A 24: 1036.CrossRefGoogle Scholar
  44. Tesauro G and Cross M.C., 1986, Climbing of Dislocations in Nonequilibrium ‘1234567890p;p;lkjhfgsPatterns, Phys. Rev. A 34: 1363.CrossRefGoogle Scholar
  45. Tesauro G. and Cross M.C., 1987, Grain Boundaries in Models of Convective Patterns, Phil. Mag. A 56: 703.CrossRefGoogle Scholar
  46. Toner J. and Nelson D.R., 1981, Smectic, Cholesteric, and Rayleigh-Bénard Order in two Dimensions, Phys. Rev. B 23: 316.MathSciNetCrossRefGoogle Scholar
  47. Wesfreid J.E. and Zaleski S., 1984, éditeurs, “Cellular Structures in Instabilities”, Lecture Notes in Physics 210, Springer-Verlag, Berlin, 1984Google Scholar
  48. Yang X.D., Joëts A. and Ribotta R., 1988, Localized Instabilities and Nucleation of Dislocations in Convective Rolls, in “Propagation in Systems far from Equilibrium”, edited by J.E. Wesfreid, H.R. Brand, P. Manneville, G. Albinand and N. Boccara, Springer-Verlag, Heidelberg, p. 194.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • P. Coullet
    • 1
  1. 1.Laboratoire de Physique ThéoriqueUniversité de NiceNiceFrance

Personalised recommendations