Skip to main content

Inferring the Dynamic, Quantifying Physical Complexity

  • Chapter
Book cover Measures of Complexity and Chaos

Part of the book series: NATO ASI Series ((NSSB,volume 208))

Summary

Through its formalization of inductive inference, computational learning theory provides a foundation for the inverse problem of chaotic data analysis: inferring the deterministic equations of motion underlying observed random behavior in physical systems. Integrating the geometric and statistical techniques of dynamical systems with learning theory provides a framework for consistently, although not absolutely, distinguishing between deterministic chaos and extrinsic fluctuations at a given level of computational resources. Two approaches to the inverse problem, estimating symbolic equations of motion and reconstructing minimal automata from chaotic data series, are reviewed from this point of view. With an inferred model dynamic the dynamical entropies and dimensions can be estimated. More interestingly, its structural properties give a measure of the intrinsic computational complexity of the underlying process.

Portions of this essay were distributed as “Learning the Dynamic”, an extended abstract submitted 15 April 1989 to the Conference on Computational Learning Theory to be held 31 July — 2 August 1989, University of California, Santa Cruz. This work was supported by ONR contract N00014-86-K-0154.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Crutchfield, N. H. Packard, J. D. Fanner, and R. S. Shaw. Chaos. Sci. Am., 255: 46, 1986.

    Google Scholar 

  2. J. P. Crutchfield and B. S. McNamara. Equations of motion from a data series. Complex Systems, 1: 417, 1987.

    MathSciNet  MATH  Google Scholar 

  3. J. P. Crutchfield and K. Young. Inferring statistical complexity. Phys. Rev. Let, 63:10 July, 1989.

    Article  MathSciNet  Google Scholar 

  4. J. P. Crutchfield and K. Young. Computation at the onset of chaos. In W. Zurek, editor, Entropy, Complexity, and Physics of Information. Addison-Wesley, 1989. to appear.

    Google Scholar 

  5. J. P. Crutchfield and K. Young. Thermodynamics of minimal reconstructed machines. in preparation, 1989.

    Google Scholar 

  6. E. M. Gold. Language identification in the limit. Info. Control, 10: 447, 1967.

    Article  MATH  Google Scholar 

  7. J. P. Crutchfield and N. H. Packard. Symbolic dynamics of noisy chaos. Physica, 7D: 201, 1983.

    MathSciNet  Google Scholar 

  8. R. M. Wharton. Approximate language identification. Info. Control, 26: 236, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. M. Gold. Complexity of automaton identification from given data. Info. Control, 37: 302, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Angluin. On the complexity of minimum inference of regular sets. Info. Control, 39: 337, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. P. Crutchfield. Noisy Chaos. PhD thesis, University of California, Santa Cruz, 1983. published by University Microfilms Intl, Minnesota.

    Google Scholar 

  12. N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw. Geometry from a time series. Phys. Rev. Let., 45: 712, 1980.

    Article  Google Scholar 

  13. J. Rissanen. Modeling by shortest data description. Automatica, 14: 462, 1978.

    Article  Google Scholar 

  14. A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comp., C-21: 592, 1972.

    Google Scholar 

  15. N. H. Packard. Measurements of Chaos in the Presence of Noise. PhD thesis, University of California, Santa Cruz, 1982.

    Google Scholar 

  16. P. Gras sberger. Toward a quantitative theory of self-generated complexity. Intl. J. Theo. Phys., 25: 907, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. P. Crutchfield. Time is the ultrametric of causality. in preparation, 1989.

    Google Scholar 

  18. J. P. Crutchfield. Compressing chaos. in preparation, 1989.

    Google Scholar 

  19. J. Rissanen. Universal coding, information, prediction, and estimation. IEEE Trans. Info. Th., IT-30: 629, 1984.

    Article  MathSciNet  Google Scholar 

  20. J. P. Crutchfield and N. H. Packard. Symbolic dynamics of one-dimensional maps: Entropies, finite precision, and noise. Intl. J. Theo. Phys., 21: 433, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Wolfram. Computation theory of cellular automata. Comm. Math. Phys., 96: 15, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Shaw. The Dripping Faucet as a Model Chaotic System. Aerial Press, Santa Cruz, California, 1984.

    Google Scholar 

  23. C. H. Bennett. On the nature and origin of complexity in discrete, homogeneous locally-interacting systems. Found. Phys., 16: 585, 1986.

    Article  MathSciNet  Google Scholar 

  24. C. P. Bachas and B.A. Huberman. Complexity and relaxation of hierarchical structures. Phys. Rev. Let., 57: 1965, 1986.

    Article  MathSciNet  Google Scholar 

  25. S. Lloyd and H. Pagels. Complexity as thermodynamic depth. Ann. Phys., 188: 186, 1988.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Crutchfield, J.P. (1989). Inferring the Dynamic, Quantifying Physical Complexity. In: Abraham, N.B., Albano, A.M., Passamante, A., Rapp, P.E. (eds) Measures of Complexity and Chaos. NATO ASI Series, vol 208. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0623-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0623-9_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0625-3

  • Online ISBN: 978-1-4757-0623-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics