Advertisement

Chaos on a Catastrophe Manifold

  • S. T. Gaito
  • G. P. King
Part of the NATO ASI Series book series (NSSB, volume 208)

Abstract

The work reported here grew out of an attempt to develop a global understanding of the bifurcations and chaotic dynamics in a bi-stable chaotic oscillator [10,3]. Our theoretical work follows Zeeman’s programme of incorporating non-trivial dynamics into Catastrophy theory modelling by allowing control parameters to have a state-dependent component [11]. We note that this is similar in spirit to the approach adopted by King and Swinney who treated a state parameter as if it were a control parameter in their experimental investigation of the stability of wavy Taylor vortices [6].

Keywords

Chaotic System Catastrophe Theory Pitchfork Bifurcation Negative Resistor Branch Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Birman J S and Williams R F (1983) Topology 22 pp 47–82;MathSciNetMATHCrossRefGoogle Scholar
  2. Birman J S and Williams R F (1983) Contemporary Mathematics 20 pp 1–60;MathSciNetMATHCrossRefGoogle Scholar
  3. Holmes P (1986) Physica 21D pp 7–41;MathSciNetMATHGoogle Scholar
  4. Holmes P and Williams R F (1985) Arch. Rat. Mech. and Annal. 90 pp 115–194.MathSciNetMATHGoogle Scholar
  5. [2]
    Broomhead D S and King G P (1986) Physica 20D pp 217–236.MathSciNetMATHGoogle Scholar
  6. [3]
    Freire E, Franquelo L G and Aracil J (1984) IEEE Trans. Circuits Syst. CAS-31 237.MathSciNetCrossRefGoogle Scholar
  7. [4]
    Gaito S T and King G P (unpublished).Google Scholar
  8. [5]
    Gomes G, Ashwin P, Swift J W, and King G P (unpublished).Google Scholar
  9. [6]
    King G P and Swinney H L (1983) Phys. Rev. A27 pp 1240–3.CrossRefGoogle Scholar
  10. [7]
    Matsumoto T, Chua L O, and Komuro M (1985) IEEE Trans. Circuits Syst. CAS-32 798.MathSciNetGoogle Scholar
  11. [8]
    Procaccia I and Ross J (1978) J. Chem. Phys. 67 pp 5558–5564;MathSciNetCrossRefGoogle Scholar
  12. [8]
    Procaccia I and Ross J (1978) J. Chem. Phys. 67 pp 5565–5571.MathSciNetCrossRefGoogle Scholar
  13. [9]
    Riïsler O E (1979) in Structural Stability in Physics ed W Giittinger and H Eikemeier ( BerlinHeidelberg-N.Y. Springer-Verlag ) pp 290–309.Google Scholar
  14. [10]
    Shinriki M, Yamamoto M and Mori S (1981) Proc. IEEE 69 pp 394–395.CrossRefGoogle Scholar
  15. [11]
    Zeeman E C (1972) in Towards a Theoretical Biology,Vol4 ed C H Waddington (Edinburgh University Press) 8–67;Google Scholar
  16. Zeeman E C (1976) Bull. Inst. Math. and Appl. 12 207–214.MathSciNetGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • S. T. Gaito
    • 1
  • G. P. King
    • 1
  1. 1.Nonlinear Systems Laboratory, Mathematics InstituteUniversity of WarwickCoventry CV4 7ALUnited Kingdom

Personalised recommendations