Dynamical Complexity of Strange Sets

  • Ditza Auerbach
Part of the NATO ASI Series book series (NSSB, volume 208)


Systems governed by deterministic dynamics may exhibit unpredictable time evolution, thus appearing chaotic. Such phenomena are ubiquitous in nature, ranging from turbulent fluid flows to heart arrythmia. The unpredictability of chaotic systems arises from the abundancy of trajectories that exist for slight changes of the initial conditions. The entropy provides a measure of the multitude of possible time evolutions a system may exhibit, but does not provide a quantification of the ease or difficulty with which the set of all possible motions can be organized and encoded. Many of the proposed definitions [1] for dynamical complexity reduce to entropy related quantities such as the Kolmogorov entropy, and as such are measures of randomness. In this communication a measure of complexity unrelated to the entropy is introduced in order to quantify the difficulty in organizing the possible motions of a chaotic system. Other proposed topological definitions of complexity [2], such as the algorithmic complexity usually diverge for a generic chaotic system.


Periodic Orbit Chaotic System Periodic Point Regular Expression Stable Manifold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. N. Kolmogorov, Probl. Inform. Transm. 1, 1 (1965);MathSciNetGoogle Scholar
  2. G. Chaitin, J. Assoc. Comp. Math. 13, 547 (1966);MathSciNetMATHCrossRefGoogle Scholar
  3. A. Lempel and J. Ziv, IEEE Trans. Inform. Theory 22, 75 (1976).MathSciNetMATHCrossRefGoogle Scholar
  4. [2]
    S. Wolfram, Commun. Math. Phys. 96, 15 (1984);MathSciNetMATHCrossRefGoogle Scholar
  5. P. Grassberger, Inter. Jour. Theo. Phys. 25, 939 (1986);MathSciNetCrossRefGoogle Scholar
  6. J. Crutchfield and K. Young, Phys. Rev. Lett. 63, 109 (1989).MathSciNetCrossRefGoogle Scholar
  7. [3]
    J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).MathSciNetCrossRefGoogle Scholar
  8. [4]
    D. Auerbach, B. O’Shaughnessy, and I. Procaccia, Phys. Rev. A 37, 2234 (1988).CrossRefGoogle Scholar
  9. [5]
    G. K. Gunaratne and I. Procaccia, Phys. Rev. Lett. 59, 1377 (1987).MathSciNetCrossRefGoogle Scholar
  10. [6]
    D. Auerbach, P. Cvitanovic, J.-P. Eckmann, G. Guneratne and I. Procaccia, Phys. Rev. Lett. 58, 2387 (1987).MathSciNetCrossRefGoogle Scholar
  11. [7]
    P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems ( Birkhauser, Boston, 1980 ).MATHGoogle Scholar
  12. [8]
    D. Auerbach and I. Procaccia, in preparation.Google Scholar
  13. [9]
    J. E. Hoperoft and J. D. Ullman, Introduction to Automata Theory, Language and Computation (Addison-Wesley 1979 ).Google Scholar
  14. [10]
    H. G. E. Hentschel and I. Procaccia, Physica 8D, 435 (1983).MathSciNetMATHGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Ditza Auerbach
    • 1
  1. 1.Dept. of Chemical PhysicsWeizmann InstituteRehovotIsrael

Personalised recommendations