Cation Transport

  • László Latzkovits
  • Csaba Fajszi

Abstract

According to the traditional concept1–3 of cation transport, there are “active” and “passive” fluxes: the former drives cations uphill (against an electrochemical gradient) at the expense of ATP consumption, whereas the latter moves cations downhill (in the direction of the electrochemical gradient) by simple diffusion across membrane “imperfections” or “pores.” This traditional concept of active and passive cation fluxes has proved to be inadequate for two main reasons.4–11 (1) It has been demonstrated that the “active” pump transporting both Na+ and K+, usually uphill, by direct consumption of ATP can also drive cation movements “on the level” (i.e., in the absence of any concentration gradient) or even downhill.4,5 (2) Evidence has been collected that demonstrates that “passive” fluxes of cations are highly organized and are closely associated with important physiological functions6: many of them take place as part of counter- or cotransport mechanisms.5–9 Thus, the energy of the electrochemical gradient of the cation actually moving downhill is not dissipated but is mostly consumed in promotion of the transport of different compounds (e.g., sugars, amino acids, other cations), in some cases even against a concentration gradient. In this way, “passive” fluxes of cations moving downhill can build up a concentration gradient for other cations without any waste of ATP.5–9 Selectivity of the membrane for some “passive” cation fluxes enables it to convert the energy of primary ionic gradients into the energy needed for the maintenance of resting membrane potential as well as for cell excitation.6,10,11

Keywords

Sugar Permeability Hydrolysis Bicarbonate Expense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosenberg, T., 1948, Acta Chem. Scand. 2: 14–28.Google Scholar
  2. 2.
    Ussing, H. H., 1949, Acta Physiol. Scand. 19: 43–67.Google Scholar
  3. 3.
    Koefoed-Johnsen, V., and Ussing, H. H., 1960, Mineral Metabolism, Volume 1 (C. L. Comar and F. Bronner, eds.), Academic Press, New York, London, pp. 169–203.Google Scholar
  4. 4.
    Glynn, I. M., and Karlish, S. J. D., 1975, Biochem. Soc. Spec. Publ. 4: 145–158.Google Scholar
  5. 5.
    Sarkadi, B., and Tosteson, D. C., 1979, Membrane Transport in Biology, Volume 2 (D. C. Tosteson, ed.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 117–160.Google Scholar
  6. 6.
    Lew, V. L., and Beaugé, L., 1979, Membrane Transport in Biology, Volume 2 (D. C. Toste-son, ed.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 81–116.Google Scholar
  7. 7.
    Schultz, S. G., and Curran, P. F., 1970, Physiol. Rev. 50: 637–656.PubMedGoogle Scholar
  8. 8.
    Crane, R. K., 1977, Rev. Physiol. Biochem. Pharmacol. 78: 99–159.PubMedGoogle Scholar
  9. 9.
    Gunn, R. B., 1980, Annu. Rev. Physiol. 42: 249–259.PubMedGoogle Scholar
  10. 10.
    French, R. J., and Adelman, W. J., Jr., 1976, Current Topics in Membranes and Transport, Volume 8 (F. Bronner and A. Kleinzeller, eds.), Academic Press, New York, pp. 161–207.Google Scholar
  11. 11.
    Blumenthal, R., Changeux, J. P., and Lefever, R., 1970, J. Membr. Biol. 2: 351–374.Google Scholar
  12. 12.
    Nicolau, C., and Paraf, A. (eds.), 1977, Structural and Kinetic Approach to Plasma Membrane Functions, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  13. 13.
    Stein, W. D., Lieb, W. R.. Karlish, S. J. D., and Eilam, Y., 1973, Proc. Natl. Acad. Sci. U.S.A. 70: 275–278.PubMedGoogle Scholar
  14. 14.
    Garrahan, P. J., and Garay. R. P., 1976, Current Topics in Membranes and Transport, Volume 8 (F. Bronner and A. Kleinzeller, eds.), Academic Press, New York, pp. 29–97.Google Scholar
  15. 15.
    Wallick, E. T., Lane, L. K.. and Schwartz, A., 1979, Annu. Rev. Phsyiol. 41: 397–411.Google Scholar
  16. 16.
    Hodgkin, A. L., and Katz. B., 1949, J. Physiol. (Load.) 108: 37–54.Google Scholar
  17. 17.
    Mullins, L. J., 1979, Membrane Transport in Biology, Volume 2 (D. C. Tosteson. ed.). Springer-Verlag, Berlin, Heidelberg, New York, pp. 161–210.Google Scholar
  18. 18.
    Prince, D. A., Pedley, T. A., and Ransom, B. R., 1978, Dynamic Properties of Glia Cells, (E. Schoffeniels, G. Franck. L. Hertz, and D. B. Tower, eds.), Pergamon Press, New York, pp. 281–303.Google Scholar
  19. 19.
    Franck, G., Grisar, T., Moonen, G., and Schoffeniels, E., 1978, Dynamic Properties of Glia Cells (E. Schoffeniels, G. Franck, L. Hertz, and D. B. Tower, eds.), Pergamon Press, New York, pp. 315–325.Google Scholar
  20. 20.
    Ling, G. N., 1977, Mol. Cell Biochem. 15: 159–171.PubMedGoogle Scholar
  21. 21.
    Walker, J. L., and Brown, H. M., 1977, Physiol. Rev. 57: 729–778.PubMedGoogle Scholar
  22. 22.
    Rasmussen, H., 1970, Science 170: 404–412.PubMedGoogle Scholar
  23. 23.
    Rasmussen, H., and Goodman, D. B. P., 1977, Physiol. Rev. 57: 421–509.PubMedGoogle Scholar
  24. 24.
    Rapp, P. E., and Berridge, M. J., 1977, J. Theor. Biol. 66: 497–525.PubMedGoogle Scholar
  25. 25.
    Berridge, M. J., 1975, Advances in Cyclic Nucleotide Research, Volume 6 (P. Greengard and G. A. Robison, eds.), Raven Press, New York, pp. 1–98.Google Scholar
  26. 26.
    Strewler, G. J., and Orloff, J., 1977, Advances in Cyclic Nucleotide Research, Volume 8 (P. Greengard and G. A. Robison, eds.), Raven Press, New York, pp. 311–361.Google Scholar
  27. 27.
    Ledbetter, M. L. S., and Lubin, M., 1979, J. Cell Biol. 80: 150–165.PubMedGoogle Scholar
  28. 28.
    Proverbio, F., and Hoffman, J. F., 1972, Fed. Proc. 31: 215–223.Google Scholar
  29. 29.
    Macknight, A. D. C., and Leaf, A., 1977, Physiol. Rev. 57: 510–573.PubMedGoogle Scholar
  30. 30.
    Kregenow, F. M., 1977, Membrane Transport in Red Cells, (J. C. Ellory and V. L. Lew, eds.), Academic Press, London, New York, pp. 383–426.Google Scholar
  31. 31.
    Bourke, R. S., and Nelson, K. M., 1972, J. Neurochem. 19: 633–685.Google Scholar
  32. 32.
    Kukes, G., Elul, R., and De Vellis, J., 1976, Brain Res. 104: 71–92.PubMedGoogle Scholar
  33. 33.
    Kimelberg, H. K., Bowman, C., Biddlecome, S., and Bourke, R. S., 1979, Brain Res. 177: 533–550.PubMedGoogle Scholar
  34. 34.
    Lux, H. D., 1980, Antiepileptic Drugs: Mechanisms of Action (G. H. Glaser, J. K. Penry, and D. M. Woodbury, eds.), Raven Press, New York, pp. 63–83.Google Scholar
  35. 35.
    Somjen, G. G., 1980, Antiepileptic Drugs: Mechanisms of Action (G. H. Glaer, J. K. Penry, and D. M. Woodbury, eds.), Raven Press, New York, pp. 155–167.Google Scholar
  36. 36.
    Wheeler, D. D., Callihan, C. S., and Wise, W. C., 1980, J. Neurosci. Res. 5: 201–216.PubMedGoogle Scholar
  37. 37.
    Kaplan, J. G., 1978, Annu. Rev. Physiol. 40: 19–41.PubMedGoogle Scholar
  38. 38.
    Leffert, H. L., and Koch, K. S., 1979, Cell 18: 153–163.PubMedGoogle Scholar
  39. 39.
    Whitfield, J. F., Boynton, A. L., Macmanus, J. P., Sikorska, M., and Tsang, B. K., 1979, Mol. Cell. Biochem. 27: 155–179.PubMedGoogle Scholar
  40. 40.
    Freedman, M. H., 1979, Cell. lmmunol. 44: 290–313.Google Scholar
  41. 41.
    Hertz, L., and Schousboe, A., 1975, Int. Rev. Neurobiol. 18: 141–211.PubMedGoogle Scholar
  42. 42.
    Oschman, J. L., 1978. Membrane Transport in Biology, Volume 3 (G. Giebisch, ed.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 55–93.Google Scholar
  43. 43.
    Ussing, H. H., and Leaf, A., 1978, Membrane Transport in Biology, Volume 3 (G. Giebisch, ed.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 1–26.Google Scholar
  44. 44.
    Galla, H. J., and Sackmann, E., 1975, Biochim. Biophys. Acta 401: 509–529.PubMedGoogle Scholar
  45. 45.
    Jacobson, K., and Papahadjopoulos, D., 1975, Biochemistry 14: 152–161.PubMedGoogle Scholar
  46. 46.
    Van Dijck, P. W. M., De Kruijff, B., Verkleij, A. J., and Van Deenen, L. L. M., 1978, Biochim. Biophys. Acta 512: 84–96.PubMedGoogle Scholar
  47. 47.
    Kimelberg, H. K., and Papahadjopoulos, D., 1971, J. Biol. Chem. 246: 1142–1150.PubMedGoogle Scholar
  48. 48.
    Butler, K. W., Hanson, A. W., Smith, I. C. P., and Schneider, H., 1973, Can. J. Biochem. 51: 980–989.PubMedGoogle Scholar
  49. 49.
    Friedrich, P., Aprókovâcs, V. A., and Solti, M., 1977, FEBS Lett. 84: 183–186.PubMedGoogle Scholar
  50. 50.
    Nicholson, C., 1980, Neurosci. Res. Prog. Bull. 18: 177–322.Google Scholar
  51. 51.
    Nicholson, C., 1979, The Neurosciences: Fourth Study Program (F. O. Schmitt and F. G. Worden, eds.), MIT Press Journals, Cambridge, Massachusetts, London, pp. 457–476.Google Scholar
  52. 52.
    Somjen, G. G., 1979, Annu. Rev. Physiol. 41: 159–177.PubMedGoogle Scholar
  53. 53.
    Atkins, G. L., and Gardner, M. L. G., 1977, Biochim. Biophys. Acta 486: 127–145.Google Scholar
  54. 54.
    Winne, D., 1977, Biochim. Biophys. Acta 464: 118–126.PubMedGoogle Scholar
  55. 55.
    Dowd, J. E., and Riggs, D. S., 1965, J. Biol. Chem. 240: 863–869.PubMedGoogle Scholar
  56. 56.
    Endrényi, L., and Kwong, F. H. F., 1972, Analysis and Simulation of Biochemical Systems (H. C. Hemker and B. Hess, eds.), North-Holland, Amsterdam, pp. 219–237.Google Scholar
  57. 57.
    Fajszi, C., and Endrényi, L., 1974, FEBS Lett., 44: 240–246.PubMedGoogle Scholar
  58. 58.
    De Miguel Merino, F., 1974, Biochem. J. 143: 93–95.Google Scholar
  59. 59.
    Eisenthal, R., and Cornish-Bowden, A., 1974, Biochem. J. 139: 715–720.PubMedGoogle Scholar
  60. 60.
    Cornish-Bowden, A., and Eisenthal, R., 1974, Biochem. J. 139: 721–730.PubMedGoogle Scholar
  61. 61.
    Cornish-Bowden, A., 1975, Biochem. J. 149: 305–312.PubMedGoogle Scholar
  62. 62.
    Solomon, A. K., 1960, Mineral Metabolism, Volume 1 (C. L. Comar and F. Bronner, eds.), Academic Press, New York, London, pp. 119–168.Google Scholar
  63. 63.
    Brownell, G. L., Berman, M., and Robertson, J. S., 1968, Int. J. Appl. Radiat. Isot. 19: 249–262.PubMedGoogle Scholar
  64. 64.
    Shipley, R. A., and Clark, R. E. (eds.), 1972, Tracer Methods for In Vivo Kinetics, Academic Press, New York, London.Google Scholar
  65. 65.
    Rubinow, S. I., and Winczer, A., 1971, Math. Biosci. 11: 203–247.Google Scholar
  66. 66.
    Lajtha, A., Latzkovits, L., and Toth, J., 1976, Biochim. Biophys. Acta 425: 511–520.PubMedGoogle Scholar
  67. 67.
    Reiner, J. M., 1953, Arch. Biochem. Biophys. 46: 53–79.PubMedGoogle Scholar
  68. 68.
    Fajszi, C., and Latzkovits, L., 1972, Biophysik 9: 64–69.PubMedGoogle Scholar
  69. 69.
    Latzkovits, L., Fajszi, C., and Szentistvânyi, I., 1972, Acta Biochim. Biophys. Acad. Sci. Hung. 7: 307–314.Google Scholar
  70. 70.
    Latzkovits, L., Szentistvânyi, I., and Fajszi, C., 1972, Acta Biochim. Biophys. Acad. Sci. Hung. 7: 55–66.PubMedGoogle Scholar
  71. 71.
    Latzkovits, L., Sensenbrenner, M., and Mandel, P., 1974, J. Neurochem. 23: 193–200.PubMedGoogle Scholar
  72. 72.
    Niehaus, W. G., Jr., and Hammerstedt, R. H., 1976, Biochim. Biophys. Acta 443: 515–524.PubMedGoogle Scholar
  73. 73.
    Ehrlich, B. E., and Diamond, J. M., 1980, J. Membr. Biol. 52: 187–200.PubMedGoogle Scholar
  74. 74.
    Schwann, A. C., and Albers, R. W., 1979, J. Biol. Chem. 254: 4540–4544.Google Scholar
  75. 75.
    Krishnan, N., and Albers, R. W., 1980. J. Neurochem. 35: 753–755.PubMedGoogle Scholar
  76. 76.
    Ellory, J. C., 1977, Membrane Transport in Red Cells (J. C. Ellory and W. L. Lew, eds.), Academic Press, London, New York, pp. 363–381.Google Scholar
  77. 77.
    Wiley, J. S., 1977, Membrane Transport in Red Cells, (J. C. Ellory and W. L. Lew, eds.), Academic Press, London, New York, pp. 337–361.Google Scholar
  78. 78.
    Siminovitch, L., 1976, Cell 7: 1–11.PubMedGoogle Scholar
  79. 79.
    Fishman, M. C., 1979, Proc. Natl. Acad. Sci. U.S.A. 76: 4661–4663.PubMedGoogle Scholar
  80. 80.
    Latzkovits, L., 1978, Dynamic Properties of Glia Cells (E. Schoffeniels, G. Franck, L. Hertz, and D. B. Tower, eds.), Pergamon Press, New York, pp. 327–336.Google Scholar
  81. 81.
    Grisar, T., Franck, G., and Schoffeniels, E., 1978, Dynamic Properties of Glia Cells (E. Schoffeniels, G. Franck, L. Hertz, and D. B. Tower, eds.), Pergamon Press, New York, pp. 359–369.Google Scholar
  82. 82.
    Banerjee, S. P., Bosman, H. B., and Morgan, H. R., 1977, Exp. Cell Res., 104: 111–117.PubMedGoogle Scholar
  83. 83.
    Scarpa, A., and Carafoli, E. (eds.), 1978, Annals of the New York Academy of Sciences, Volume 307, Calcium Transport and Cell Function, New York Academy of Sciences, New York.Google Scholar
  84. 84.
    Sulakhe, P. V., and St. Louis, P. J., 1980, Prog. Biophys. Mol. Biol., 35: 135–195.PubMedGoogle Scholar
  85. 85.
    Hill, B., 1976, Anna. Rev. Physiol., 38: 139–152.Google Scholar
  86. 86.
    Colquhoun, D., 1978, Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach (R. W. Straub and L. Bolis, eds.), Raven Press, New York, pp. 31–46.Google Scholar
  87. 87.
    Ritchie, J. M., 1978, Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach (R. W. Straub and L. Bolis, eds.), Raven Press, New York, pp. 227–242.Google Scholar
  88. 88.
    Rash, J. E., Hudson, C. S., and Ellisman, M. H., 1978, Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach (R. W. Straub and L. Bolis, eds.), Raven Press, New York, pp. 47–67.Google Scholar
  89. 89.
    Kallai-Sanfacon, M., and Reed, J. K., 1980, J. Membr. Biol. 54: 173–181.PubMedGoogle Scholar
  90. 90.
    Teissie, J., and Tsong, T. Y., 1980, J. Membr. Biol. 55: 133–140.PubMedGoogle Scholar
  91. 91.
    Wenner, C., and Hackney, J., 1976, Arch. Biochem. Biophys. 176: 37–42.PubMedGoogle Scholar
  92. 92.
    Meech, R. W., 1976, Calcium in Biological Systems (C. J. Duncan, ed.), Cambridge University Press, Cambridge, pp. 161–191.Google Scholar
  93. 93.
    Latzkovits, L., Rimanóczy. A., Juhâsz, A., Torday, C., and Sensenbrenner, M., 1981, Dev. Neurosci. (in press).Google Scholar
  94. 94.
    Wright, E. M., 1978. Membrane Transport in Biology, Volume 3 (G. Giebisch, ed.), Springer-Verlag, Berlin, Heidelberg. New York, pp. 355–377.Google Scholar
  95. 95.
    Llinâs, R., 1979, The Neurosciences: Fourth Study Program, (F. O. Schmitt and F. G. Worden, eds.), MIT Press. Cambridge, Massachusetts, pp. 555–571.Google Scholar
  96. 96.
    Lux, H. D., and Neher, E.. 1973, Exp. Brain Res. 17: 190–205.PubMedGoogle Scholar
  97. 97.
    Varon, S. S., and Somjen. G. G., 1979. Neurosci. Res. Prog. Bull. 17: 1–239.Google Scholar
  98. 98.
    Nicholson, C., Phillips, J. M., and Gardner-Medwin, A. R., 1979, Brain Res. 169: 580–584.PubMedGoogle Scholar
  99. 99.
    Kimelberg, H. K., 1974, J. Neurochem. 22: 971–976.PubMedGoogle Scholar
  100. 100.
    Kürzinger, K., Stadtkus, C., and Hamprecht, B., 1980, Eur. J. Biochem. 103: 597–611.Google Scholar
  101. 101.
    Cone, C. D., and Cone, C. M., 1976, Science 192: 155–157.PubMedGoogle Scholar
  102. 102.
    Lodin, Z., Hartman, J., Kage, M. P., Korinkovâ, P., and Booher, J., 1971 Neurobiology 1:69–85.Google Scholar
  103. 103.
    Nathanson, J. A., 1977 Physiol. Rev. 57:157–256.Google Scholar
  104. 104.
    Jenkinson, D. H., Haylett, D. G., and Koller, K., 1978, Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach (R. W. Straub and L. Bolts, eds.), Raven Press, New York, pp. 89–105.Google Scholar
  105. 105.
    Darin de Lorenzo, A. J., Brzin, M., and Dettbarn, W. D., 1968, J. Ultrastruct. Res. 24: 367–384.Google Scholar
  106. 106.
    Schoffeniels, E., Franck, G.. Hertz, L., and Tower, D. B. (eds.), 1978, Dynamic Properties of Glia Cells, Pergamon Press. Oxford, New York.Google Scholar
  107. 107.
    Kukes, G., De Vellis, J., and Elul, R., 1976, Brain Res. 104: 93–105.PubMedGoogle Scholar
  108. 108.
    Hertz, L., 1978, Brain Res. 145: 202–208.PubMedGoogle Scholar
  109. 109.
    Lazarewicz, J. W., Kanje, M., Sellström, A., and Hamberger, A., 1977, J. Neurochem. 29: 495–502.PubMedGoogle Scholar
  110. 110.
    Szentistvânyi, I., Janka, Z., Joó, F., Rimanóczy, A., Juhâsz, A., and Latzkovits, L., 1979, Neurosci. Lett. 13: 157–161.PubMedGoogle Scholar
  111. 111.
    Szentistvânyi, I., Janka, Z., Rimanóczy, A., Latzkovits, L., and Juhâsz, A., 1979, Cell. Mol. Biol. 25: 315–321.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • László Latzkovits
    • 1
  • Csaba Fajszi
    • 2
  1. 1.Institute of Experimental SurgeryMedical School of SzegedSzegedHungary
  2. 2.Institute of Biophysics, Biological Research CenterHungarian Academy of SciencesSzegedHungary

Personalised recommendations