Hydrophobic Interactions: Role in Bacterial Adhesion

  • Mel Rosenberg
  • Staffan Kjelleberg
Part of the Advances in Microbial Ecology book series (AMIE, volume 9)


The last decade has seen a dramatic rise in scientific interest in the field of bacterial adhesion and related subjects. Much of this interest has been directed in search of “specific interactions” between bacterium and substratum, such as those that are inhibited by specific sugar moieties. A second avenue of research has been the study of the role of less specific, hydrophobic interactions. Since it appears that this second avenue of research is being increasingly followed, reviews dealing with bacterial hydrophobicity and adhesion should be of use. The aims of the present chapter are to (1) present some relevant aspects of hydrophobic interactions; (2) describe the methodology available for measurements related to bacterial cell-surface hydrophobicity and the parameters they may measure; (3) discuss investigations dealing with surface components that promote or reduce bacterial hydrophobicity; and (4) survey studies related to the role of hydrophobic interactions in mediating bacterial adhesion to interfaces, traversing areas of environmental and medical interest.


Hydrophobic Interaction Bacterial Adhesion Yersinia Enterocolitica Hydrophobic Interaction Chromatography Acinetobacter Calcoaceticus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, A., and Hayes, M. L., 1984, The conditioning role of saliva in streptococcal attachment to hydroxyapatite surfaces, J. Gen. Microbiol. 130: 809–816.PubMedGoogle Scholar
  2. Abraham, S. N., Beachey, E. H., and Simpson, W. A., 1983, Adherence of Streptococcus pyogenes, Escherichia coli, and Pseudomonas aeruginosa to fibronectin-coated and uncoated epithelial cells, Infect. Immun. 41: 1261–1268.PubMedGoogle Scholar
  3. Absolom, D. R., Francis, D. W., Zingg, W., van Oss, C. J., and Neumann, A. W., 1981, Phagocytosis of bacteria by platelets: Surface thermodynamics, J. Coll. Interface Sci. 85: 168–177.Google Scholar
  4. Absolom, D. R., van Oss, C. J., Zingg, W., and Neumann, A. W., 1982, Phagocytosis as a surface phenomenon: Opsonization by aspecific adsorption of IgG as a function of bacterial hydrophobicity, Res. J. ReticuloendotheL Soc. 31: 59–70.Google Scholar
  5. Absolom, D. R., Lamberti, F. V., Policova, Z., Zingg, W., van Oss, C. J., and Neumann, A. W., 1983, Surface thermodynamics of bacterial adhesion, AppL Environ. MicrobioL. 46: 90–97.PubMedGoogle Scholar
  6. Albertsson, P. A., 1958, Particle fractionation in liquid two-phase system. The composition of some phase systems and the behavior of some model particles in them. Application to the isolation of cell walls from microorganisms, Biochim. Biophys. Acta 27: 378–395.PubMedGoogle Scholar
  7. Arakawa, K., Tokiwano, K., Ohtomo, N., and Kedaira, H., 1979, A note on the nature of ionic hydrations and hydrophobic interactions in aqueous solutions, Bull. Chem. Soc. Japan 52: 2483–2488.Google Scholar
  8. Ashkenazi, S., and Mirelman, D., 1984, Adherence of bacteria to pediatric intravenous cath-eters and needles and its relation to phlebitis in animals, Ped. Res. 18: 1361–1366.Google Scholar
  9. Banai, M., Kahane, I., Razin, S., and Bredt, W., 1978, Adherence of Mycoplasma gallisep-ticum to human erythrocytes, Infect. Immun. 21: 365–372.PubMedGoogle Scholar
  10. Banai, M., Razin, S., Bredt, W., and Kahane, I., 1980, Isolation of binding sites to glyco-phorin from Mycoplasma pneumoniae membranes, Infect. Immun. 30: 628–634.PubMedGoogle Scholar
  11. Beighton, D., 1984, The influence of saliva on the hydrophobic surface properties of bacteria isolated from oral sites of macaque monkeys, FEMS MicrobioL Lett. 21: 239–242.Google Scholar
  12. Ben-Naim, A., 1977, Hydrophobic interaction, in: l’Eau et les Systemes Biologiques, Col-loques Internationaux de CNRS, no. 246, pp. 215–221, CNRS, Paris.Google Scholar
  13. Bezdek, H. F., and Carlucci, A.F., 1974, Concentration and removal of liquid microlayers from a seawater surface by bursting bubbles, LimnoL Oceanogr. 19: 126–132.Google Scholar
  14. Blanchard, D. C., 1983, The production, distribution and bacterial enrichment of the sea-salt aerosol, in: Air-Sea Exchange of Gases and Particles ( P. S. Liss and W. G. N. Slimm, eds.), pp. 407–454, Reidel, Hingham, Massachusetts.Google Scholar
  15. Blanchard, D. C., and Syzdek, L. D., 1978, Seven problems in bubble and jet drop researches, LimnoL Oceanogr. 23: 389–400.Google Scholar
  16. Blanchard, D. C., and Syzdek, L. D., 1982, Water-to-air transfer and enrichment of bacteria in drops from bursting bubbles, Appl. Environ. Microbiol. 43: 1001–1005.PubMedGoogle Scholar
  17. Bohach, G. A., and Snyder, I. S., 1983, Characterization of surfaces involved in adherence of Legionella pneumophila to Fischerella species, Infect. Immun. 42: 318–325.PubMedGoogle Scholar
  18. Botta, G. A., 1981, Surface components in adhesion of group A streptococci to pharyngeal epithelial cells, Curr. MicrobioL 6: 101–104.Google Scholar
  19. Boyles, W. A., and Lincoln, R. E., 1958, Separation and concentration of bacterial spores and vegetative cells by foam flotation, AppL MicrobioL 6: 327–334.PubMedGoogle Scholar
  20. Breuer, W. V., Ginsburg, H., and Cabantchik, Z. I., 1984, Hydrophobic interactions in Plasmodium falciparum invasion into human erythrocytes, Mol. Biochem. Parasitol. 12: 125–138.PubMedGoogle Scholar
  21. Bryant, R. D., Costerton, J. W., and Laishley, E. J., 1984, The role of Thiobacillus albertis glycocalyx in the adhesion of cells to elemental sulfur, Can. J. Microbiol. 30: 81–90.PubMedGoogle Scholar
  22. Busscher, H. J., Weerkamp, A. H., van der Mei, H. C., van Pelt, A. W. J., de Jong, H. P., and Arends, J., 1984, Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion, Appl. Environ. Microbiol. 48: 980–983.PubMedGoogle Scholar
  23. Carruthers, M. M., and Kabat, W. J., 1983, Mediation of staphylococcal adherence to mucosal cells by lipoteichoic acid, Infect. Immun. 40: 444–446.PubMedGoogle Scholar
  24. Chakravarty, M., Singh, H. D., and Baruah, J. N., 1975, A kinetic model for microbial growth on liquid hydrocarbons. Biotechnol. Bioeng. 17: 399–412.Google Scholar
  25. Costerton, J. W., Irvin, R. T., and Cheng, K-J., 1981, The bacterial glycocalyx in nature and disease, Annu. Rev. Microbiol. 351: 299–324.Google Scholar
  26. Cotton, D. B., and Hills, B. A., 1984, Pulmonary surfactant: Hydrophobic nature of the mucosal surface of the human amnion, J. Physiol. 349: 411–418.PubMedGoogle Scholar
  27. Courtney, H. S., Simpson, W. A., and Beachey, E. H., 1983, Binding of streptococcal lipoteichoic acid to fatty acid-binding sites on human plasma fibronectin, J. Bacteriol. 153: 763–770.PubMedGoogle Scholar
  28. Cover, W. H., and Rittenberg, S. C., 1984, Change in the surface hydrophobicity of substrate cells during bdelloplast formation by Bdellovibrio bacteriovorus 109J, J. Bacteriol. 157: 391–397.PubMedGoogle Scholar
  29. Cunningham, R. K., Soderstrom, T. O., Gillman, C. F., and van Oss C. J., 1975, Phagocytosis as a surface phenomenon. V. Contact angles and phagocytosis of rough and smooth strains of Salmonella typhimurium, and the influence of specific antiserum, ImmunoL Comm. 4: 429–442.Google Scholar
  30. Dahlback, B., 1983, Marine Microorganisms and Interfaces, Ph.D. thesis, University of Goteborg.Google Scholar
  31. Dahlback, B., Hermansson, M., Kjelleberg, S., Norkrans B., and Pedersen, K., 1980, Cell surface hydrophobicity and charge related to the initial microbial adhesion at the air-water interface, in: Microbial Adhesion to Surfaces ( R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 540–541, Ellis Horwood, Chichester, England.Google Scholar
  32. Dahlback, B., Hermansson, M., Kjelleberg, S., and Norkrans, B., 1981, The hydrophobicity of bacteria—An important factor in their initial adhesion at the air-water interface, Arch. Microbiol. 128: 267–270.PubMedGoogle Scholar
  33. Davison, V. E., and Sanford, B. A., 1982, Factors influencing adherence of Staphylococcus aureus to influenza A virus-infected cell cultures, Infect. Immun. 37: 946–955.PubMedGoogle Scholar
  34. Dawson, M. P., Humphrey, B. A., and Marshall, K. C., 1981, Adhesion: A tactic in the survival strategy of a marine vibrio during starvation, Curr. Microbiol 6: 195–199.Google Scholar
  35. Dexter, S. C., 1979, Influence of substratum critical surface tension on bacterial adhesion—In situ studies, J. Colloid Interface Sci. 70: 346–354.Google Scholar
  36. Dexter, S. C., Sullivan, Jr., J. D., Williams III, J., and Watson, S. W., 1975, Influence of substrate wettability on the attachment of marine bacteria to various surfaces, Appl. Microbiol 30: 298–308.Google Scholar
  37. Doyle, R. J., Nedjat-Halem, F., and Singh, J. S., 1984, Hydrophobic characteristics of Bacillus spores, Curr. Microbiol 10: 329–332.Google Scholar
  38. Dworkin, M., Keller, K. H., and Weisberg, D., 1983, Experimental observations consistent with a surface tension model of gliding motility of Myxococcus xanthus, J. Bacteriol. 155: 1367–1371.PubMedGoogle Scholar
  39. Dyar, M. T., 1948, Electrokinetical studies on bacterial surfaces. II. Studies on surface lipids, amphoteric material and some other surface properties, J. Bacteriol. 56: 821–834.Google Scholar
  40. Edebo, L., Kihlstrom, E., Magnusson, K.-E., and Stendahl, O, 1980, The hydrophobic effect and charge effects in the adhesion ofenterobacteria to animal cell surfaces and the influences of antibodies of different immunoglobulin classes, in: Cell Adhesion and Motility ( A. S. G. Curtis and J. D. Pitts, eds.), pp. 65–101, Cambridge University Press, Cambridge.Google Scholar
  41. Edebo, L., Magnusson, K.-E., and Stendahl, O., 1983, Physico-chemical surface properties of Shigella sonnei, Acta PathoL MicrobioL Immunol. Scand. B 91: 101–106.PubMedGoogle Scholar
  42. Ellwood, D. C., Keevil, C. W., Marsh, P. D., Brown, C. M., and Wardell, J. N., 1982, Sur-face-associated growth, Phil. Trans. R. Soc. Lond. B 297: 517–532.Google Scholar
  43. Erne, A. M., Werner, R. G., and Reifenrath, R., 1984, Inhibition of bacterial adhesion by an artificial surfactant, FEMS Microbiol. Lett. 23: 205–209.Google Scholar
  44. Faris, A., Wadstrom, T., and Freer, J. H., 1981, Hydrophobic adsorptive and hemagglutinating properties of Escherichia coli possessing colonization factor antigens (CFA/I or CFA/II), type 1 pili, or other pili, Curr. MicrobioL 5: 67–72.Google Scholar
  45. Faris, A., Lindahl, M., and Wadstrom, T., 1982, High surface hydrophobicity of hemagglutinating Vibrio cholerae and other vibrios, Curr. MicrobioL 7: 357–362.Google Scholar
  46. Faris, A., Lindahl, M., and Wadstrom, T., 1983, Autoaggregating Yersinia enterocolitica express surface fimbriae with high surface hydrophobicity, J. AppL Bacteriol. 55: 97–100.PubMedGoogle Scholar
  47. Fattom, A., and Shilo, M., 1984, Hydrophobicity as an adhesion mechanism of benthic Cyanobacteria, Appl. Environ. Microbiol 47: 135–143.PubMedGoogle Scholar
  48. Ferreiros, C. M., and Criado, M. T., 1984, Expression of surface hydrophobicity encoded by R-plasmids in Escherichia coli laboratory strains, Arch. Microbiol. 138: 191–194.PubMedGoogle Scholar
  49. Firon, N., Ofek, I., and Sharon, N., 1982, Interaction of mannose-containing oligosaccharides with the fimbrial lectin of Escherichia coli, Biochem. Biophys. Res. Commun. 105: 1426–1432.PubMedGoogle Scholar
  50. Fletcher, M., 1976, The effects of proteins of bacterial attachment to polystyrene, J. Gen. Microbiol. 94: 400–404.PubMedGoogle Scholar
  51. Fletcher, M., 1983, The effects of methanol, ethanol, propanol and butanol on bacterial attachment to surfaces; J. Gen. Microbiol. 129: 633–641.Google Scholar
  52. Fletcher, M., 1985, The utilization of glucose by free-living bacteria and those attached to solid surfaces, in: Abstracts of the 85th Annual Meeting, American Society for Microbiology, p. 158.Google Scholar
  53. Fletcher, M., and Loeb, G. I., 1979, Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces, Appl. Environ. Microbiol. 37: 67–72.PubMedGoogle Scholar
  54. Fletcher, M., and Marshall, K. C., 1982a, Bubble contact angle method for evaluating substratum interfacial characteristics and its relevance to bacterial attachment, Appl. Environ. Microbiol. 44: 184–192.PubMedGoogle Scholar
  55. Fletcher, M., and Marshall, K. C., 1982b, Are solid surfaces of ecological significance to aquatic bacteria?, in: Advances in Microbial Ecology, Vol. 6 ( K. C. Marshall, ed.), pp. 199–236, Plenum Press, New York.Google Scholar
  56. Gaudin, A. M., Mular, A. L., and O’Connor, R. F., 1960, Separation of microorganisms by flotation. H. Flotation of spores of Bacillus subtilis var. niger, Appl. Microbiol. 8: 91–97.PubMedGoogle Scholar
  57. Gerson, D. F., and Akit, J., 1980, Cell surface energy, contact angles and phase partition. II. Bacterial cells in biphasic aqueous mixtures, Biochim. Biophys. Acta 602: 281–284.PubMedGoogle Scholar
  58. Gibbons, R. J., 1980, Adhesion of bacteria to the surfaces of the mouth, in: Adsorption of Microorganisms to Surfaces ( R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), pp. 351–388, Ellis Horwood, Chichester, England.Google Scholar
  59. Gibbons, R. J., and Etherden, L, 1983, Comparative hydrophobicities of oral bacteria and their adherence to salivary pellicles, Infect. Immun. 49: 1190–1196.Google Scholar
  60. Gibbons, R. J., Spinell, D. M., and Skobe, Z., 1976, Selective adherence as a determinant of the host tropisms of certain indigenous and pathogenic bacteria, Infect. Immun. 13: 238–246.Google Scholar
  61. Gibbons, R. J., Etherden, I., and Skobe, Z., 1983, Association of fimbriae with the hydrophobicity of Streptococcus sanguis FC-1 and adherence to salivary pellicles, Infect. Immun. 41: 414–417.PubMedGoogle Scholar
  62. Gordon, A. S., and Millero, F. J., 1985, Bacterial respiration and assimilation of organic nutrients sorbed to mineral surfaces, in: Abstracts of the 85th Annual Meeting, American Society for Microbiology, p. 278.Google Scholar
  63. Hejkal, T. W., LaRock, P. A., and Winchester, J. W., 1980, Water-to-air fractionation of bacteria, Appl. Environ. Microbiol. 39: 335–338.PubMedGoogle Scholar
  64. Hermansson, M., and Dahlback, B., 1983, Bacterial activity at the air/water interface, Microb. Ecol. 9: 317–328.Google Scholar
  65. Hermansson, M., and Marshall, K. C., 1985, Utilization of surface localized substrate by non-adhesive marine bacteria, Microb. Ecol. 11: 91–105.Google Scholar
  66. Hermansson, M., Kjelleberg, S., and Norkrans, B., 1979, Interaction of pigmented wildtype and pigmentless mutant of Serratia marcescens with lipid surface film, FEMS Microbiol. Lett. 6: 129–132.Google Scholar
  67. Hermansson, M., Kjelleberg, S., Korhonen, T. K., and Stenstrom, T.-A., 1982, Hydrophobic and electrostatic characterization of surface structures of bacteria and its relationship to adhesion at an air-water surface, Arch. Microbiol. 131: 308–312.Google Scholar
  68. Hildebrand, J. H., 1979, Is there a “hydrophobic effect”?, Proc. Natl. Acad. Sci. USA 76: 194.PubMedGoogle Scholar
  69. Hill, M. J., James, A. M., and Maxted, W. R., 1963, Some physical investigations of the behaviour of bacterial surfaces. X. The occurrence of lipids in the streptococcal cell wall, Biochim. Biophys. Acta 75: 414–424.PubMedGoogle Scholar
  70. Hills, B. A., 1984a, Hydrophobic lining of the eustachian tube imparted by surfactant, Arch. Otolarynogol. 110: 779–782.Google Scholar
  71. Hills, B. A., 1984b, Surfactant as a release agent opposing the adhesion of tumor cells in determining malignancy, Med. Hypotheses 14: 99–110.PubMedGoogle Scholar
  72. Hills, B. A., Butler, B. F., and Lichtenberger, L. M., 1983, Gastric mucosal barrier: Hydro- phobic lining to the lumen of the stomach, Am. Physiol. Soc. 1983: G561 - G568.Google Scholar
  73. Hjertén, S., Rosengren, J., and Pahlman, S., 1974, Hydrophobic interaction chromatography. The synthesis and the use of some alkyl and aryl derivatives of agarose, J. Chromatogr. 101: 281–288.Google Scholar
  74. Hogt, A. H., Dankert, J., Feijen, J., and de Vries, J. A., 1982, Cell surface hydrophobicity of Staphylococcus species and adhesion onto biomaterials, Antoni van Leeuwenhoek J. Microbiol. Soc. 48: 496–498.Google Scholar
  75. Hogt, A. H., Dankert, J., and Feijen, J., 1983a, Encapsulation, slime production and surface hydrophobicity of coagulase-negative staphylococci, FEMS Microbial. Lett. 18: 21 1215.Google Scholar
  76. Hogt, A. H., Dankert, J., de Vries, J. A., and Feijen, J., 1983b, Adhesion of coagulase-negative staphylococci to biomaterials, J. Gen. Microbiol. 129: 2959–2968.PubMedGoogle Scholar
  77. Honda, T., Arita, M., and Miwatani, T., 1984, Characterization of new hydrophobic pili of human enterotoxigenic Escherichia coli: A possible new factor, Infect. Immun. 43: 959–965.PubMedGoogle Scholar
  78. Humphrey, B. A., Dickson, M. R., and Marshall, K. C., 1979, Physicochemical and in situ observations on the adhesion of gliding bacteria to surfaces, Arch. Microbiol. 120: 23 1238.Google Scholar
  79. Iimura, Y., Hara, S., and Otsuka, K., 1980, Cell surface hydrophobicity as a pellicle for- mation factor in film strain of Saccharomyces, Agric. Biol. Chem. 6: 1215–1222.Google Scholar
  80. Israelachvili, J. N., and Pashley, R. M., 1984, Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions, J. Colloid Interface Sci. 98: 500–514.Google Scholar
  81. Jann, K., Schmidt, G., Blumenstock, E., and Vosbeck, K., 1981, Escherichia coli adhesion to Saccharomyces cerevisiae and mammalian cells: Role of piliation and surface hydrophobicity, Infect. Immun. 32: 484–489.Google Scholar
  82. Jeffrey, W. H., and Paul, J. H., 1985, The effect of attachment to polystyrene on the activity of marine microfouling bacteria, in: Abstracts of the 85th Annual Meeting, American Society for Microbiology, p. 229.Google Scholar
  83. Jiwa, S. F. H., and Mansson, I., 1981, Hemagglutinating and hydrophobic surface properties of salmonellae producing enterotoxin neutralized by cholera anti-toxin, Veterinary Microbiol. 8: 443–458.Google Scholar
  84. Jones, G. W., and Isaacson, R. E., 1983, Proteinaceous bacterial adhesins and their receptors, CRC Crit. Rev. Microbiol. 10: 229–260.Google Scholar
  85. Jonsson, P., and Wadstrom, T., 1983, High surface hydrophobicity of Staphylococcus aureus as revealed by hydrophobic interaction chromatography, Curr. Microbial. 8: 347–353.Google Scholar
  86. Jonsson, P., and Wadstrom, T., 1984, Cell surface hydrophobicity of Staphylococcus aureus measured by the salt aggregation test (SAT), Curr. Microbiol. 10: 203–210.Google Scholar
  87. Kabir, S., and Ali, S., 1983, Characterization of surface properties of Vibrio cholerae, Infect. Immun. 39: 1048–1058.PubMedGoogle Scholar
  88. Kappeli, O., and Fiechter, A., 1976, The mode of interaction between the substrate and the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis, Biotechnol. Bioeng. 18: 967–974.Google Scholar
  89. Katoh, M., and Matsuo, Y., 1983, Adherence of Mycobacterium lepraemurium to tissue culture cells, Hiroshima J. Med. Sci. 32: 285–290.PubMedGoogle Scholar
  90. Kauss, H., and Young, D. H., 1983, Fungal spores are agglutinated by proteins and adhere to bean hypocotyls due to nonspecific binding, in: Chemical Taxonomy, Molecular Biology, and Function of Plant Lectins, pp. 187–196, Alan R. Liss, New York.Google Scholar
  91. Kefford, B., Kjelleberg, S., and Marshall, K. C., 1982, Bacterial scavenging: Utilization of fatty acids localized at a solid-liquid interface, Arch. Microbiol. 133: 257–260.Google Scholar
  92. Kennedy, R. S., Finnerty, W. R., Sudarsanan, K., and Young, R. A., 1975, Microbial assimilation of hydrocarbon. I. The fine structure of a hydrocarbon oxidizing Acinetobacter sp., Arch. Microbiol. 102: 75–83.PubMedGoogle Scholar
  93. Kirschner-Zilber, I., Rosenberg, E., and Gutnick, D., 1980, Incorporation of 32P and growth of pseudomonad UP-2 on n-tetracosane, Appl. Environ. Microbiol. 40: 1086–1093.Google Scholar
  94. Kitamura, A., 1984, Evidence for an increase in the hydrophobicity of the cell surface during sexual interactions of Paramecium, Cell Struct. Funct. 9: 91–95.Google Scholar
  95. Kjelleberg, S., 1984a, Effects of interfaces on survival mechanisms of copiotrophic bacteria in low-nutrient habitats, in: Current Perspectives in Microbial Ecology ( M. J. Klug and C. A. Reddy, eds.), pp. 151–159, American Society for Microbiology, Washington, D.C.Google Scholar
  96. Kjelleberg, S., 1984b, Adhesion to inanimate surfaces, in: Microbial Adhesion and Aggregation. ( K. C. Marshall, ed.), pp. 51–70, Springer, Berlin.Google Scholar
  97. Kjelleberg, S., 1985, Mechanisms for bacterial adhesion at gas-liquid interfaces, in: Bacterial Adhesion: Mechanisms and Physiological Significance ( D. C. Savage and M. M. Fletcher, eds.), pp. 163–194, Plenum Press, New York.Google Scholar
  98. Kjelleberg, S., and Hermansson, M., 1984, Starvation induced effects on bacterial surface characteristics, Appl. Environ. Microbiol. 48: 497–503.PubMedGoogle Scholar
  99. Kjelleberg, S., and Stenstrom, T. A., 1980, Lipid surface films: Interaction of bacteria with free fatty acids and phospholipids at the air/water interface, J. Gen. Microbiol. 116: 417–423.Google Scholar
  100. Kjelleberg, S., Lagercrantz, C., and Larsson, T., 1980, Quantitative analysis of bacterial hydrophobicity studied by the binding of dodecanoic acid, FEMS MicrobioL Lett. 7: 41–44.Google Scholar
  101. Kjelleberg, S., Humphrey, B. A., and Marshall, K. C., 1982, The effect of interfaces on small starved marine bacteria, AppL Environ. MicrobioL. 43: 1166–1172.PubMedGoogle Scholar
  102. Kjelleberg, S., Humphrey, B. A., and Marshall, K. C., 1983, Initial phases of starvation and activity of bacteria at surfaces, Appl. Environ. MicrobioL 46: 978–984.Google Scholar
  103. Kjelleberg, S., Marshall, K. C., and Hermansson, M., 1985a, Oligotrophic and copiotrophic marine bacteria—Observations related to attachment, FEMS MicrobioL Ecol. (in press).Google Scholar
  104. Kjelleberg, S., Conway, P., and Stenstrom, T. A., 1985b, Inhibition of the starvation survival process of laboratory bacteria strains and the colon microflora of mice, Arch. MicrobioL (in press).Google Scholar
  105. Kozel, T. R., 1983, Dissociation of a hydrophobic surface from phagocytosis of encapsulated and non-encapsulated Cryptococcus neoformans, Infect. Immun. 39: 1214–1219.PubMedGoogle Scholar
  106. Kupfer, D., and Zusman, D. R., 1984, Changes in cell surface hydrophobicity of Myxococcus xanthus are correlated with sporulation-related events in the developmental program, J. BacterioL 159: 776–779.PubMedGoogle Scholar
  107. Lachica, R. V., and Zink, D L., 1984a, Plasmid-associated cell surface charge and hydrophobicity of Yersinia enterocolitica, Infect. Immun. 44: 540–543.PubMedGoogle Scholar
  108. Lachica, R. V., and Zink, D. L, 1984b, Determination of plasmid-associated hydrophobicity of Yersinia enterocolitica by a latex particle agglutination test, J. Clin. Microbiol. 19: 660–663.Google Scholar
  109. Lachica, R. V., Zink, D. L., and Ferris, W. R., 1984, Association of fibril structure formation with cell surface properties of Yersinia enterocolitica, Infect. ImmunoL 46: 272–275.Google Scholar
  110. Leive, L., Telesetsky, S., Coleman, Jr., W. G. and Carr, D., 1984, Tetracyclines of various hydrophobicities as a probe for permeability of Escherichia coli outer membranes, Antimicrob. Agents Chemother. 25: 539–544.PubMedGoogle Scholar
  111. Lindahl, M., Faris, A., Wadstrom, T., and Hjerten, S., 1981, A new test based on `salting out’ to measure relative surface hydrophobicity of bacterial cells, Biochim. Biophys. Acta 677: 471–476.PubMedGoogle Scholar
  112. Lis, H., and Sharon, N., 1977, Lectins: Their chemistry and application to immunology, in: The Antigens ( M. Sela, ed.), Vol. 4, pp. 429–529, Academic Press, New York.Google Scholar
  113. Mackey, B. M., 1983, Changes in antibiotic sensitivity and cell surface hydrophobicity in Escherichia coli injured by heating, freezing, drying or gamma radiation, FEMS MicrobioL Lett. 20: 395–399.Google Scholar
  114. Magnusson, K.-E., 1980, The hydrophobic effect and how it can be measured with relevance for cell-cell interactions, Scand. J. Infect. Dis. SuppL 24: 131–134.Google Scholar
  115. Magnusson, K.-E., 1982, Hydrophobic interaction—A mechanism of bacterial binding, Scand. J. Infect. Dis. SuppL 33: 32–36.Google Scholar
  116. Magnusson, K.-E., and Johansson, G., 1977, Probing the surface of Salmonella typhimurium SR and R bacteria by aqueous biphasic partitioning in systems containing hydrophobic and charged polymers, FEMS Microbiol. Lett. 2: 225–228.Google Scholar
  117. Magnusson, K.-E., Kihlstrom, E., Norlander, L., Norqvist, A., Davies, J., and Normark, S., 1979a, Effect of colony type and pH on surface charge and hydrophobicity of Neisseria gonorrhoeae, Infect. Immun. 26: 397–401.PubMedGoogle Scholar
  118. Magnusson, K.-E., Kihlstrom, E., Norqvist, A., Davies, J., and Normark, S., 1979b, Effect of iron on surface charge and hydrophobicitiy Neisseria gonorrhoeae, Infect. Immun. 26: 402–407.PubMedGoogle Scholar
  119. Malmqvist, T., 1983, Bacterial hydrophobicity measured as partition of palmitic acid between the two immiscible phases of cell surface and buffer, Acta Pathol. Microbiol. ImmunoL Scand. B 91: 69–73.Google Scholar
  120. Malmqvist, T., Thelestam, M., and Mollby, R., 1984, Hydrophobicity of cultured mammalian cells and some effects of bacterial phospholipases C, Acta Pathol. Microbiol. Immunol. Scand. B 92: 127–133.Google Scholar
  121. Marshall, K. C., 1979, Growth at interfaces, in: Strategies of Microbial Life in Extreme Environments ( M. Shilo, ed.), pp. 281–290, Verlag Chemie, Weinheim.Google Scholar
  122. Marshall, K. C., and Cruickshank, R. H., 1973, Cell surface hydrophobicity and the orientation of certain bacteria at interfaces, Arch. Mikrobiol. 91: 29–40.PubMedGoogle Scholar
  123. Marshall, K. C., Cruickshank, R. H., and Bushby, H. V. A., 1975, The orientation of certain root-nodule bacteria at interfaces, including root-hair surfaces, J. Gen. Microbiol. 91: 198–200.PubMedGoogle Scholar
  124. Martinez, R. J., 1983, Plasmid-mediated and temperature-regulated surface properties of Yersinia enterocolitica, Infect. Immun. 41: 921–930.Google Scholar
  125. McIntire, F. C., Crosby, L. K., and Vatter, A. E., 1982, Inhibitors of coaggregation between Actinomyces viscosus T 1 4V and Streptococcus sanguis 34: ß-Galactosides, related sugars, and anionic amphipathic compounds, Infect. Immun. 36: 371–378.Google Scholar
  126. McLee, A. G., and Davies, S. L., 1972, Linear growth of a Torulopsis sp. on n-alkanes, Can. J. Microbiol. 18: 315–319.Google Scholar
  127. Miller, R. D., 1983, Legionella pneumophila cell envelope: Permeability to hydrophobic molecules, Curr. Microbiol. 9: 349–354.Google Scholar
  128. Miorner, H., Myhre, E., Bjorck L., and Kronvall, G., 1980, Effect of specific binding of human albumin, fibrinogen, and immunoglobulin G on surface characteristics of bacterial strains as revealed by partition experiments in polymer phase systems, Infect. Immun. 29: 879–885.PubMedGoogle Scholar
  129. Miomer, H., Johansson, G., and Kronvall, G., 1983, Lipoteichoic acid is the major cell wall component responsible for surface hydrophobicity of group A streptococci, Infect. Immun. 39: 336–343.Google Scholar
  130. Miorner, H., Havlicek, J., and Kronvall, G., 1984, Surface characteristics of group A streptococci with and without M-protein, Acta Pathol. Microbiol Immunol. Scand. B 92: 2330.Google Scholar
  131. Miura, Y., Okazaki, M., Hamada, S -I, Murakawa, S.-I., and Yugen, R., 1977, Assimilation of liquid hydrocarbon by microorganisms. I. Mechanism of hydrocarbon uptake, Biotechnol. Bioeng. 19: 701–714.PubMedGoogle Scholar
  132. Moore, R. L., and Marshall, K. C., 1981, Attachment and rosette formation by hyphomicrobia, Appl. Environ. Microbial. 42: 751–757.Google Scholar
  133. Morisaki, H., 1983, Effect of solid-liquid interface on metabolic activity of Escherichia coli, J. Gen. Appl. Microbiol. 29: 195–204.Google Scholar
  134. Morisaki, H., 1984, Effect of a liquid-liquid interface on the metabolic activity of Escherichia coli, J. Gen. Appl. Microbiol 30: 35–42.Google Scholar
  135. Morrow, A. W., 1969, Concentration of the virus of foot and mouth disease by foam flotation, Nature 222: 489–490.PubMedGoogle Scholar
  136. Mudd, S., and Mudd, E. B. H., 1924a, The penetration of bacteria through capillary spaces. IV. A kinetic mechanism in interfaces, J. Exp. Med. 40: 633–645.PubMedGoogle Scholar
  137. Mudd, S., and Mudd, E. B. H., 1924b, Certain interfacial tension relations and the behaviour of bacteria in films, J. Exp. Med. 40: 647–660.PubMedGoogle Scholar
  138. Nakahara, T., Hisatsuka, K., and Minoda, Y., 1981, Effect of hydrocarbon emulsification on growth and respiration of microorganisms in hydrocarbon media, J. Ferment. Technol. 59: 415–418.Google Scholar
  139. Nesbitt, W. E., Doyle, R. J., and Taylor, K. G., 1982, Hydrophobic interactions and the adherence of Streptococcus sanguis to hydroxylapatite, Infect. Immun. 38: 637644.Google Scholar
  140. Neufeld, R. J., and Zajic, J. E., 1984, The surface activity of Acinetobacter calcoaceticus sp. 2CA2, Biotechnol. Bioeng. 26: 1108–1113.PubMedGoogle Scholar
  141. Neufeld, R. J., Zajic, J. E., and Gerson, D. F., 1980, Cell surface measurements in hydro- carbon and carbohydrate fermentations, Appl. Environ. Microbiol. 39: 511–517.PubMedGoogle Scholar
  142. Neumann, A. W., Absolom, D. R., Francis, D. W., Omenyi, S. N., Spelt, J. K., Policova, Z., Thomson, C., Zingg, W., and van Oss, C. J., 1983, Measurement of surface tensions of blood cells and proteins, in: Surface Phenomena in Hemotheology: Their TheoreticalGoogle Scholar
  143. Experimental and Clinical Aspects (A. L. Copley and G. V. F. Seaman, eds.) Ann. N.Y. Acad. Sci. 416:276–298.Google Scholar
  144. Norkrans, B., 1980, Surface microlayers in aquatic environments, in: Advances in Microbial Google Scholar
  145. Ecology, Vol. 4. (M. Alexander, ed.), pp. 51–85, Plenum Press, New York. Ochoa, J.-L., 1978, Hydrophobic (interaction) chromatography, Biochimie 60: 1–15.Google Scholar
  146. Ofek, I., Whitnack, E., and Beachey, E. H., 1983. Hydrophobic interactions of group A strep-Google Scholar
  147. tococci with hexadecane droplets, J. Bacteriol. 154:139–145.Google Scholar
  148. Ohman, L., 1983, Interaction between Escherichia coli Bacteria and Human Granulocytes—The Role of Hydrophobic and Sugarspecific Surface Properties, Ph.D. thesis, University of Linkoping, Sweden.Google Scholar
  149. Ohman, L., Magnusson, K.-E., and Stendahl, O., 1982, The mannose-specific lectin activity of Escherichia coli type 1 fimbriae assayed by agglutination of glycolipid-containing liposomes, erythrocytes, and yeast cells and hydrophobic interaction chromatography, FEMS Microbiol. Lett. 14: 149–153.Google Scholar
  150. Olsson, J., and Westergren, G., 1982, Hydrophobic surface properties of oral streptococci, FEMS Microbiol. Lett. 15: 319–323.Google Scholar
  151. Ouchi, K., and Akiyama, H., 1971, Non-foaming mutants of Sake yeasts: Selection by cell agglutination method and by froth flotation method, Agric. BioL Chem. 7: 1024–1032.Google Scholar
  152. Parker, B. C., Ford, M. A., Gruft, H., and Falinham III, J. O., 1983, Epidemiology of infection by nontuberculous mycobacteria. IV. Preferential aerosolization of Mycobacterium intracellulare from natural waters, Am. Rev. Respir. Dis. 128: 652–656.PubMedGoogle Scholar
  153. Parker, N. D. and Munn, C. B., 1984, Increased cell surface hydrophobicity associated with possession of an additional surface protein by Aeromonas salmonicida, FEMS Microbiol. Lett. 21:233–237.Google Scholar
  154. Pedros-Alio, C., and Brock, T. D., 1983, The importance of attachment to particles for plankonic bacteria, Arch. Hydrobiol. 98: 354–379.Google Scholar
  155. Perers, L., Andaker, L., Edebo, L., Stendahl, O., and Tagesson, C., 1977, Association of some enterobacteria with the intestinal mucosa of mouse in relation to their partition in aqueous polymer two-phase systems, Acta PathoL Microbiol. Scand. B 85: 305–316.Google Scholar
  156. Pertsovskaya, A. F., Duda, V. I., and Zvyagintsev, D. G., 1973, Surface ultrastructures of adsorbed microorganisms, Soy. Soil Sci. 4: 684–689.Google Scholar
  157. Pines, O., and Gutnick, D., 1984, Alternate hydrophobic sites on the cell surface of Acinetobacter calcoaceticus RAG-1, FEMS Microbiol. Lett. 22: 307–311.Google Scholar
  158. Pringle, J. H., and Fletcher, M., 1983, Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces, AppL Environ. Microbiol. 45: 811–817.PubMedGoogle Scholar
  159. Pringle, J. H., Fletcher, M., and Ellwood, D. C., 1983, Selection of attachment mutants during the continuous culture of Pseudomonas fluorescens and relationship between attachment ability and surface composition, J. Gen. MicrobioL 129: 2557–2559.Google Scholar
  160. Reddy, P. G., Singh, H. D., Roy, P. K., and Baruah, J. N., 1982, Predominant role of hydrocarbon solubilization in the microbial uptake of hydrocarbons, Biotechnol. Bioeng. 24: 1241–1269.PubMedGoogle Scholar
  161. Reed, G. B., and Rice, C. E., 1931, The behaviour of acid-fast bacteria in oil and water systems, J. Bacteriol. 22: 239–247.PubMedGoogle Scholar
  162. Reuveny, S., Mizrahi, A., Kotler, M., and Freeman, A., 1983, Factors effecting cell attachment, spreading and growth on derivatized microcarriers. II. Introduction of hydrophobic elements, Biotechnol. Bioeng. 25: 2969–2980.PubMedGoogle Scholar
  163. Roantree, R. J. Kuo, T.-T., and MacPhee, D. G., 1977, The effect of defined lipopolysaccharide core defects upon antibiotic resistances of Salmonella typhimurium, J. Gen. Microbiol. 103:223–234.Google Scholar
  164. Rogers, A. H., Pilowsky, K., and Zilm, P. S., 1984, The effect of growth rate on the adhesion of the oral bacteria Streptococcus mutans and Streptococcus, milleri, Arch. Oral Biol. 29: 147–150Google Scholar
  165. Romanenko, V. L, 1979, Bacterial growth on slides and electron microscope grids in surface water films and ooze deposits, Microbiology 48: 105–109.Google Scholar
  166. Rosenberg, E., Gottlieb, A., and Rosenberg, M., 1983a, Inhibition of bacterial adherence to epithelial cells and hydrocarbons by emulsan, Infect. Immun. 39: 1024–1028.PubMedGoogle Scholar
  167. Rosenberg, E., Kaplan, N., Pines, O., Rosenberg, M., and Gutnick, D., 1983b, Capsular polysaccharides interfere with adherence of Acinetobacter calcoaceticus to hydrocarbons, FEMS Microbiol. Lett. 17: 157–160.Google Scholar
  168. Rosenberg, E., Brown, D. R., and Demain, A. L., 1985, The influence of gramicidin S on hydrophobicity of germinating Bacillus brevis spores, Arch. Microbiol. 142: 51–54.Google Scholar
  169. Rosenberg, M., 1981, Bacterial adherence to polystyrene: A replica method of screening for bacterial hydrophobicity, Appl. Environ. Microbiol 42: 375–377.PubMedGoogle Scholar
  170. Rosenberg, M., 1982, Adherence of Bacteria to Hydrocarbons and Other Hydrophobic Surfaces, Ph.D. thesis, University of Tel-Aviv, Israel.Google Scholar
  171. Rosenberg, M., 1984a, Bacterial adherence to hydrocarbons: A useful technique for studying cell surface hydrophobicity, FEMS Microbiol. Lett. 22: 289–295.Google Scholar
  172. Rosenberg, M., 1984b, Ammonium sulphate enhances adherence of Escherichia coli J-5 to hydrocarbon and polystyrene, FEMS Microbiol. Lett. 25: 41–45.Google Scholar
  173. Rosenberg, M., 1984c, Isolation of pigmented and nonpigmented mutants of Serratia mar-cescens with reduced cell surface hydrophobicity, J. Bacteriol. 160: 480–482.PubMedGoogle Scholar
  174. Rosenberg, M., and Rosenberg, E., 1981, Role of adherence in growth of Acinetobacter cal-coaceticus on hexadecane, J. Bacteriol. 148: 51–57.PubMedGoogle Scholar
  175. Rosenberg, M., Gutnick, D., and Rosenberg, E., 1980a, Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity, FEMS Microbiol. Lett. 9: 29–33.Google Scholar
  176. Rosenberg, M., Rosenberg, E., and Gutnick, D., 1980b, Bacterial adherence to hydrocarbons, in: Microbial Adhesion to Surfaces ( R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent eds.), pp. 541–542, Ellis Horwood, Chichester, England.Google Scholar
  177. Rosenberg, M., Perry, A., Bayer, E. A., Gutnick, D. L., Rosenberg, E., and Ofek, I., 1981, Adherence of Acinetobacter calcoaceticus RAG-1 to human epithelial cells and to hexadecane, Infect. Immun. 33: 29–33.PubMedGoogle Scholar
  178. Rosenberg, M. Bayer, E. A., Delarea, J., and Rosenberg, E., 1982a, Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus on hexadecane, Appl. Environ. Microbiol 44: 929–937.PubMedGoogle Scholar
  179. Rosenberg, M., Rottem, S., and Rosenberg, E., 1982b, Cell surface hydrophobicity of smooth and rough Proteus mirabilis strains as determined by adherence to hydrocarbons, FEMS Microbiol. Lett. 13: 167–169.Google Scholar
  180. Rosenberg, M., Rosenberg, E., Judes, H., and Weiss, E., 1983a, Bacterial adherence to hydrocarbons and to surfaces in the oral cavity, FEMS Microbiol. Lett. 20: 1–5.Google Scholar
  181. Rosenberg, M., Judes, H., and Weiss, E., 1983b, Desorption of adherent bacteria from a solid hydrophobic surface by oil, J. Microbial. Meth. 1: 239–244.Google Scholar
  182. Rosenberg, M., Judes, H., and Weiss, E., 1983c, Cell surface hydrophobicity of dental plaque microorganisms in situ, Infect. Immun. 42: 831–834.Google Scholar
  183. Rubin, A. J., Cassel, E. A., Henderson, O., Johnson, J. D., and Lamb III, J. C., 1966, Micro-flotation: New low gas-flow rate foam separation technique for bacteria and algae, Biotechnol. Bioeng. 8: 135–151.Google Scholar
  184. Runnels, P. L., and Moon, H. W., 1984, Capsule reduces adherence of enterotoxigenic Esch- erichia coli to isolated intestinal epithelial cells of pigs, Infect. Immun. 45: 737–740.PubMedGoogle Scholar
  185. Rutter, P. R., 1980, The physical chemistry of adhesion of bacteria and other cells, in: Cell Adhesion and Motility ( A. S. G. Curtis and J. D. Pitts, eds.), pp. 103–135, Cambridge University Press, Cambridge.Google Scholar
  186. Sacks, L. E., and Alderton, G., 1961, Behavior of bacterial spores in aqueous polymer two-phase systems, J. Bacteriol. 82: 331–340.PubMedGoogle Scholar
  187. Shields, P. A., and Farrah, S. R., 1983, Influence of salts on electrostatic interactions between poliovirus and membrane filters, Appl. Environ. Microbiol. 45: 526–531.PubMedGoogle Scholar
  188. Simpson, W. A., Ofek, I., and Beachey, E. H., 1980, Fatty acid binding sites of serum albumin as membrane receptor analogs for streptococcal lipoteichoic acid, Infect. Immun. 29: 119–122.Google Scholar
  189. Smith, B. F., and LaMont, J. T., 1984, Hydrophobic binding properties of bovine gallbladder mucin, J. Biol. Chem. 259: 12170–12177.PubMedGoogle Scholar
  190. Smyth, C. J., Jonsson, P., Olsson, E., Soderlind, O., Rosengren, J., Hjerten, S., and Wadstrom, T., 1978, Differences in hydrophobic surface characteristics of porcine enteropathogenic Escherichia coli with or without K88 antigen as revealed by hydrophobic interaction chromatography, Infect. Immun. 22: 462–472.Google Scholar
  191. Sobel, J. D., and Obedeanu, N., 1984, Role of hydrophobicity in adherence of gram-negative bacteria to epithelial cells, Ann. Clin. Lab. Sci. 14:216–224.Google Scholar
  192. Sobeslaysky, O., Prescott, B., and Chanock, R. M., 1968, Adsorption of Mycoplasma pneumoniae to neuraminic acid receptors of various cells and possible role in virulence, J. BacterioL 96: 695–705.Google Scholar
  193. Stanley, S. O., and Rose, A. H., 1967, On the clumping of Corynebacterium xeroxis as affected by temperature, J. Gen. Microbiol. 115: 509–512.Google Scholar
  194. Stenstrom, T.-A., and Kjelleberg, S., 1985, Fimbriae mediated nonspecific adhesion of Salmonella typhimurium to mineral particles, Arch. Microbiol. (in press).Google Scholar
  195. Sugarman, B., 1982, In vitro adherence of bacteria to prosthetic vascular grafts, Infection 10: 9–16.PubMedGoogle Scholar
  196. Svanberg, M., Westergren, G., and Olsson, J., 1984, Oral implantation in humans of Streptococcus mutans strains with different degrees of hydrophobicity, Infect. Immun. 43: 817–821.Google Scholar
  197. Svanborg-Eden, C. S., Bjursten, L.-M., Hull, R., Hull, S. Magnusson, K.-E., Moldovano, Z., and Leffler, H., 1984, Influence of adhesins on the interaction of Escherichia coli with human phagocytes, Infect. Immun. 44: 672–680.Google Scholar
  198. Syzdek, L. D., 1985, Influence of Serratia marcescens pigmentation on cell concentrations in aerosols produced by bursting bubbles, Appl. Environ. MicrobioL 49: 173–178.PubMedGoogle Scholar
  199. Tanford, C., 1973, the Hydrophobic Effect: Formation of Micelles and Biological Mem-branes, Wiley-Interscience, New York.Google Scholar
  200. Tanford, C., 1979, Interfacial free energy and the hydrophobic effect, Proc. Natl. Acad. Sci. USA 76: 4175–4176.PubMedGoogle Scholar
  201. Todd, I., and Gingell, D., 1980, Red blood cell adhesion. I. Determination of the ionic conditions for adhesion to an oil-water interface, J. Cell Sci. 41: 125–133.PubMedGoogle Scholar
  202. Trust, T. J., Kay, W. W., and Ishiguro, E. E., 1983, Cell surface hydrophobicity and macro-. phage association of Aeromonas salmonicida, Curr. MicrobioL 9: 315–318, 1983.Google Scholar
  203. Tylewska, S. K., Hjerten, S., and Wadstrom, T., 1979, Contribution of M protein to the hydrophobic surface properties of Streptococcus pyogenes, FEMS Microbiol. Lett. 6: 249–253.Google Scholar
  204. Vance, D. W., and Hatch, T. P., 1980, Surface properties of Chlamydia psittaci, Infect. Immun. 29: 175–180.Google Scholar
  205. Van Oss, C. J., 1978, Phagocytosis as a surface phenomenon, Annu. Rev. Microbiol. 32: 1939.Google Scholar
  206. Van Oss, C. J., and Gillman, C. F., 1972, Phagocytosis as a surface phenomenon. I. Contact angles and phagocytosis of non-opsonized bacteria, Res. J. Reticuloendothel. Soc. 12: 283–292.Google Scholar
  207. Wadstrom, T., Schmidt, K.-H., Kuhnemund, O., Havlicek, J., and Kohler, W., 1984, Comparative studies on surface hydrophobicity of streptococcal strains of groups A, B, C, D and G, J. Gen. MicrobioL 130: 657–664.PubMedGoogle Scholar
  208. Wang, P. Y., 1974, Evidence of hydrophobic interaction in adhesion to tissue, Nature 249: 367–368.PubMedGoogle Scholar
  209. Weber, M. E., Blanchard, D. C., and Syzdek, L. D., 1983, The mechanism of scavenging of waterborne bacteria by a rising bubble, Limnol. Oceanogr. 28: 101–105.Google Scholar
  210. Weiss, E., Rosenberg, M., Judes, H., and Rosenberg, E., 1982, Cell surface hydrophobicity of adherent oral bacteria, Curr. Microbiol. 7: 125–128.Google Scholar
  211. Weiss, E., Judes, H., and Rosenberg, M., 1985, Adherence of a non-oral hydrophobic bacterium to the human tooth surface, Dental Med. 3: 11–13.Google Scholar
  212. Wendt, S. L., George, K. L., Parker, B. C., Gruft, H., and Falkinham III, J. 0., 1980, Epidemiology of infection by nontuberculous mycobacteria. III. Isolation of potentially pathogenic mycobacteria from aerosols, Am. Rev. Respir. Dis. 122: 159–263.Google Scholar
  213. Westergren, G., and Olsson, J., 1983, Hydrophobicity and adherence of oral streptococci after repeated subculture in vitro, Infect. Immun. 40: 432–435.Google Scholar
  214. Woodcock, A. H., 1948, Note concerning human respiratory irritation associated with high concentrations of plankton and mass mortality of marine organisms, J. Mar. Res. 7: 5662.Google Scholar
  215. Wyndham, R. C., and Costerton, J. W., 1982, Bacterioneuston involved in the oxidation of hydrocarbons at the air-water interface, J. Great Lakes Res. 8: 316–322.Google Scholar
  216. Xiu, J. H., Magnusson, K.-E., Stendahl, 0., and Edebo, L., 1983, Physicochemical surface properties and phagocytosis by polymorphonuclear leucocytes of different serogroups of Salmonella, J. Gen. Microbiol. 129: 3075–3084.Google Scholar
  217. Young, D. H., and Kauss, H., 1984, Adhesion of Colletotrichum lindernuthianum spores to Phaseolus vulgaris hypocotyls and to polystyrene, Appl. Environ. Microbiol. 47: 616–619.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Mel Rosenberg
    • 1
  • Staffan Kjelleberg
    • 2
  1. 1.School of Dental Medicine and Department of Human Microbiology, Sackler Faculty of MedicineTel-Aviv UniversityRamat-AvivIsrael
  2. 2.Department of Marine MicrobiologyUniversity of GöteborgGöteborgSweden

Personalised recommendations