Skip to main content

Measurement of Bacterial Growth Rates in Aquatic Systems from Rates of Nucleic Acid Synthesis

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 9))

Abstract

Marine microbiology has expanded rapidly as a scientific discipline in the last 10–20 years. A change in experimental approach, from isolation of individual organisms and pure culture studies to whole-community studies, has helped foster this expansion. New techniques, such as epifluorescence microscopy and the use of radioisotopes, have shown that bacteria are more numerous and active than had been generally accepted. Early work with radioisotopes showed that bacteria were actively metabolizing organic matter in the sea, but accurate measurements of growth rates and production were needed in order to quantify fully the role of bacteria in food chains and cycles of organic matter. Perhaps the ultimate expression of bacterial activity is cell division. If we can quantify this, then we can confidently make statements about other activities of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azam, F., and Fuhrman, J A, 1984, Measurement of bacterioplankton growth in the sea and its regulation by environmental conditions, in: Heterotrophic Activity in the Sea ( J. Hobbie and P. J. leB. Williams, eds.), pp. 179–196, Plenum Press, New York.

    Google Scholar 

  • Bell, R. T., and Kuparinen, J., 1984, Assessing phytoplankton and bacterioplankton production during early spring in Lake Erken, Sweden, Appl. Environ. Microbiol. 48: 1221–1230.

    PubMed  CAS  Google Scholar 

  • Bell, R. T., Ahlgren, G. M., and Ahlgren, I., 1983, Estimating bacterioplankton production by measuring [3H]thymidine incorporation in a eutrophic Swedish lake, Appl. Environ. Microbiol. 45: 1709–1721.

    PubMed  CAS  Google Scholar 

  • Bern, L., 1985, Autoradiographic studies of [methyl-3H]thymidine incorporation in a cyanobacterium (Microcystis wesenbergii)-bacterium association and in selected algae and bacteria, Appl. Environ. Microbiol. 49: 232–233.

    PubMed  CAS  Google Scholar 

  • Bienfang, P., and Gundersen, K., 1977, Light effects on nutrient-limited, oceanic primary production, Mar. Biol. 43: 187–199.

    CAS  Google Scholar 

  • Brock, T. D., 1967, Bacterial growth rate in the sea: Direct analysis by thymidine autoradiography, Science 155: 81–83.

    PubMed  CAS  Google Scholar 

  • Brock, T. D., 1971, Microbial growth rates in nature, Bacterial. Rev. 35: 39–58.

    CAS  Google Scholar 

  • Brunschede, H., Dove, T. L., and Bremer, H., 1977, Establishment of exponential growth after a nutritional shift-up in Escherichia coli B/r: Accumulation of deoxyribonucleic acid, ribonucleic acid, and protein, J. Bacterial. 129: 1020–1033.

    CAS  Google Scholar 

  • Burns, D., Andrews, C., Craven, D., Orrett, K., Pierce, B., and Karl, D.; 1984, Microbial biomass, rates of DNA synthesis and estimated carbon production in Kaneohe Bay, Hawaii, Bull. Mar. Sci. 34: 346–357.

    Google Scholar 

  • Burton, K., 1977, Transport of adenine, hypoxanthine and uracil into Escherichia coli, Biochem. J. 168: 195–204.

    PubMed  CAS  Google Scholar 

  • Campbell, A., 1957, Synchronization of cell division, Bacterial. Rev. 21: 263–272.

    CAS  Google Scholar 

  • Carlucci, A. F., and Shimp, S. L., 1974, Isolation and growth of a marine bacterium in low concentrations of substrate, in: Effect of the Ocean Environment on Microbial Activities ( R. R. Colwell and R. Y. Morita, eds.), pp. 363–367, University Park Press, Baltimore.

    Google Scholar 

  • Christian, R. R., Hanson, R. B., and Newell, S. Y., 1982, Comparison of methods for measurement of bacterial growth rates in mixed batch cultures, Appt Environ. Microbial. 43: 1160–1165.

    CAS  Google Scholar 

  • Dale, N. G., 1974, Bacteria in intertidal sediments: Factors related to their distribution, Limnol. Oceanogr. 19: 509–518.

    Google Scholar 

  • Delattre, J. M., Delesmont, R., Clabaux, M., Oger, C., and Leclerc, H., 1979, Bacterial biomass, production and heterotrophic activity of the coastal seawater at Gravelines (France), Oceanol. Acta 2: 317–324.

    Google Scholar 

  • Dennis, P. P., and Bremer, H., 1974, Macromolecular composition during steady-state growth of Escherichia coli B/r, J. Bacterial. 119: 270–281.

    CAS  Google Scholar 

  • Ducklow, H. W., 1982, Chesapeake Bay nutrient and plankton dynamics. 1. Bacterial biomass and production during spring tidal destratification in the York River, Virginia, estuary, Limnol. Oceanogr. 27: 651–659.

    CAS  Google Scholar 

  • Ducklow, H. W., 1983, The production and fate of bacteria in the oceans, Bioscience 33: 494–501.

    Google Scholar 

  • Ducklow, H. W., and Hill, S. M., 1985, Tritiated thymidine incorporation and the growth of heterotrophic bacteria in warm core rings, Limnol. Oceanogr. 30: 260–272.

    CAS  Google Scholar 

  • Ducklow, H. W., and Kirchman, D. L., 1983, Bacterial dynamics and distribution during a spring diatom bloom in the Hudson River plume, U.S.A., J. Plankton Res. 5: 333–355.

    Google Scholar 

  • Ducklow, H. W., and Mitchell, R., 1979, Bacterial populations and adaptations in the mucus layers on living corals, Limnol. Oceanogr. 24: 715–725.

    Google Scholar 

  • Ducklow, H. W., Kirchman, D. L., and Rowe, G. T., 1982, Production and vertical flux of attached bacteria in the Hudson River plume of the New York Bight as studied with floating sediment traps, Appt Environ. Microbial. 43: 769–776.

    CAS  Google Scholar 

  • Eppley, R. W., Horrigan, S. G., Fuhrman, J. A., Brooks, E. R., Price, C. C., and Sellner, K., 1981, Origins of dissolved organic matter in Southern California coastal waters, experiments on the role of zooplankton, Mar. Ecol. Prog. Ser. 6: 149–159.

    Google Scholar 

  • Fallon, R. D., Newell, S. Y., and Hopkinson, C. S., 1983, Bacterial production in marine sediments: Will cell-specific measures agree with whole-system metabolism? Mar. Ecol. Prog. Ser. 11: 119–127.

    Google Scholar 

  • Fenchel, T., 1982, Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers, Mar. Ecol. Prog. Ser. 9: 35–42.

    Google Scholar 

  • Findlay, S., Meyer, J. L., and Smith, P. J., 1984, Significance of bacterial biomass in the nutrition of a freshwater isopod (Lirceus sp.), Oecologia (Berlin) 63: 38–42.

    Google Scholar 

  • Fink, R. M., and Fink, K., 1962, Relative retention of H’ and C14 labels of nucleosides incorporated into nucleic acids of Neurospora, J. Biol. Chem. 237: 2889–2891.

    PubMed  CAS  Google Scholar 

  • Forsdyke, D. R., 1968, Studies of the incorporation of [5–313] uridine during activation and transformation of lymphocytes induced by phytohaemagglutinin, Biochem J. 107: 197–205.

    PubMed  CAS  Google Scholar 

  • Forsdyke, D. R., 1971, Application of the isotope-dilution principle to the analysis of factors affecting the incorporation of [3H]uridine and [3H]cytidine into cultured lymphocytes, Bioch. J. 125: 721–732.

    CAS  Google Scholar 

  • Fuhrman, J. A., and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California, Appl. Environ. Microbial. 39: 1085–1095.

    CAS  Google Scholar 

  • Fuhrman, J. A., and Azam, F., 1982, Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results, Mar. Biol. 66: 109–120.

    Google Scholar 

  • Fuhrman, J A, Ammerman, J W., and Azam, F., 1980, Bacterioplankton in the coastal euphotic zone: Distribution, activity and possible relationships with phytoplankton, Mar. Biol. 60: 201–207.

    Google Scholar 

  • Gillis, M., De Ley, J., and De Cleene, M., 1970, The determination of molecular weight of bacterial genome DNA from renaturation rates, Eur. J. Biochem. 12: 143–153.

    PubMed  CAS  Google Scholar 

  • Glaser, V. M., Al-Nui, M. A., Groshev, V. V., and Shestakov, S. V., 1973, The labelling of nucleic acids by radioactive precursors in the blue-green algae, Arch. Mikrobiol. 92: 217–226.

    PubMed  CAS  Google Scholar 

  • Grivell, A. R., and Jackson, J. F., 1968, Thymidine kinase: Evidence for its absence from Neurospora crassa and some other micro-organisms, and the relevance of this to the specific labelling of deoxyribonucleic acid, J. Gen. Microbial. 54: 307–317.

    CAS  Google Scholar 

  • Hagstrom, A., 1984, Aquatic bacteria: Measurements and significance of growth, in: Current Perspectives in Microbial Ecology ( M. J. Klug and C. A. Reddy, eds.), pp. 95–501, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Hagstrom, A., Larsson, U., Horstedt, P., and Normark, S., 1979, Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments, Appl. Environ. Microbial. 37: 805–812.

    CAS  Google Scholar 

  • Hanson, R. B., and Lowery, H. K., 1983, Nucleic acid synthesis in oceanic microplankton from the Drake Passage, Antarctica: Evaluation of steady-state growth, Mar. Biol. 73: 79–89.

    CAS  Google Scholar 

  • Hanson, R. B., Lowery, H. K., Shafer, D., Sorocco, R., and Pope, D. H., 1983, Microheterotrophs in the Antarctic Ocean (Drake Passage): Nutrient uptake, productivity estimates, and biomass, Appl. Environ. Microbial. 45: 1622–1632.

    CAS  Google Scholar 

  • Hermansson, M., and Marshall, K. C., 1985, Utilization of surface localized substrate by non-adhesive marine bacteria, Microb. Ecol. 11: 91–105.

    CAS  Google Scholar 

  • Hollibaugh, J. T., Fuhrman, J. A., and Azam, F., 1980, Radioactively labeling natural assemblages of bacterioplankton for use in trophic studies, Limnol. Oceanogr. 25: 171–181.

    Google Scholar 

  • Hoppe, H.-G., 1976, Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of micro-autoradiography, Mar. Biol. 36: 291–302.

    Google Scholar 

  • Hunter, T., and Francke, B., 1974, In vitro polyoma DNA synthesis characterization of a system from infected 3T3 cells, J. Virol. 13: 125–139.

    CAS  Google Scholar 

  • Jannasch, H. W., 1969, Estimations of bacterial growth rates in natural waters, J. Bacteriol. 99: 156–160.

    PubMed  CAS  Google Scholar 

  • Karl, D. M., 1979, Measurement of microbial activity and growth in the ocean by rates of stable ribonucleic acid synthesis, Appl. Environ. Microbial. 38: 850–860.

    CAS  Google Scholar 

  • Karl, D. M., 1981, Simultaneous rates of RNA and DNA syntheses for estimating growth and cell division of aquatic microbial communities, AppL Environ. Microbiol. 42: 802–810.

    PubMed  CAS  Google Scholar 

  • Karl, D. M., 1982, Selected nucleic acid precursors in studies of aquatic microbial ecology, Appl. Environ. Microbiol. 44: 891–902.

    PubMed  CAS  Google Scholar 

  • Karl, D. M., Winn, C. D., and Wong, D. C. L., 1981, RNA synthesis as a measure of microbial growth in aquatic environments. I. Evaluation, verification and optimization of methods, Mar. Bio!. 64: 1–12.

    CAS  Google Scholar 

  • Kirchman, D., 1983, The production of bacteria attached to particles suspended in a freshwater pond, LimnoL Oceanogr. 28: 858–872.

    Google Scholar 

  • Kirchman, D., Ducklow, H. W., and Mitchell, R., 1982, Estimates of bacterial growth from changes in uptake rates and biomass, App!. Environ. Microbiol. 44: 1296–1307.

    CAS  Google Scholar 

  • Kjeldgaard, N. O., Maaloe, O., and Schaechter, M., 1958, The transition between different physiological states during balanced growth of Salmonella typhimurium, J. Gen. Microbiol. 19: 607–616.

    CAS  Google Scholar 

  • Kjelleberg, S., Humphrey, B. A., and Marshall, K C, 1982, Effect of interfaces on small, starved marine bacteria, App!. Environ. Microbiol 43: 1166–1172.

    CAS  Google Scholar 

  • Kornberg, A., 1980, DNA Replication, Freeman, San Francisco.

    Google Scholar 

  • Kuebbing, D., and Werner, R., 1975, A model for compartmentation of de novo and salvage thymidine nucleotide pools in mammalian cells, Proc. Natl. Acad. Sci. USA 72: 3333–3336.

    PubMed  CAS  Google Scholar 

  • Kunicka-Goldfinger, W., 1976, Determination of growth of aquatic bacteria by measurements of incorporation of tritiated thymidine, Acta Microbiol. Polon. 25: 279–286.

    CAS  Google Scholar 

  • Lancelot, C., and Billen, G., 1984, Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton bloom in the southern bight of the North Sea, Limnol. Oceanogr. 29: 721–730.

    CAS  Google Scholar 

  • Lark, K. G., 1969, Initiation and control of DNA synthesis. Annu. Rev. Biochem. 38: 569–604.

    PubMed  CAS  Google Scholar 

  • LaRock, P. A., Lauer, R. D., Schwarz, J. R., Watanabe, K. K., and Wiesenburg, D. A., 1979, Microbial biomass and activity distribution in an anoxic, hypersaline basin, Appl. Environ. Microbiol. 37: 466–470.

    PubMed  CAS  Google Scholar 

  • Laws, E. A., 1983, Plots of turnover times versus added substrate concentrations provide only upper bounds to ambient substrate concentrations, J. Theoret. Bio!. 101: 147–150.

    Google Scholar 

  • Maaloe, O., and Kjeldgaard, N. 0., 1966, Control of Macromolecular Synthesis. A Study of DNA, RNA, and Protein Synthesis in Bacteria, Benjamin, New York.

    Google Scholar 

  • Maley, G. F., and Maley, F., 1972, The regulatory influence of allosteric effectors on deoxycytidylate deaminase, Curr. Top. Cell. Regul. 17: 177–228.

    Google Scholar 

  • Mathews, C. K., North, T. W., and Reddy, G. P. V., 1979, Multienzyme complexes in DNA precursor biosynthesis, in: Advances in Enzyme Regulation, Vol. 17 ( G. Weber, ed.), pp. 133–156. Pergamon Press, Oxford.

    Google Scholar 

  • Meyer-Reil, L.-A., 1977, Bacterial growth rates and biomass production, in: Microbial Ecology of a Brackish Water Environment ( G. Rheinheimer, ed.), pp. 223–236, Springer-Verlag, Berlin.

    Google Scholar 

  • Moriarty, D. J. W., 1980, Measurement of bacterial biomass in sandy sediments, in: Bio-geochemistry of Ancient and Modern Environments ( P. A. Trudinger, M. R. Walter, and B. J. Ralph, eds.), pp. 131–138, Australian Academy of Science, Canberra and Springer-Verlag, Berlin.

    Google Scholar 

  • Moriarty, D. J. W., 1982, Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef, Aust. J. Mar. Freshwater Res. 33: 255–263.

    Google Scholar 

  • Moriarty, D. J. W., 1983, Bacterial biomass and productivity in sediments, stromatolites and water of Hamelin Pool, Shark Bay, W. A., Geomicrobiol. J. 3: 121–133.

    Google Scholar 

  • Moriarty, D. J. W., 1984, Measurements of bacterial growth rates in some marine systems using the incorporation of tritiated thymidine into DNA, in: Heterotrophic Activity in the Sea ( J. E. Hobbie and P. J. leB. Williams, eds.), pp. 217–231, Plenum Press, New York.

    Google Scholar 

  • Moriarty, D. J. W., 1986, Bacterial productivity in ponds used for culture of penaeid prawns, Gelang Patah, Malaysia, Microb. Ecol. 12. (in press).

    Google Scholar 

  • Moriarty, D. J. W., and Pollard, P. C., 1981, DNA synthesis as a measure of bacterial productivity in seagrass sediments, Mar. Ecol. Prog. Ser. 5: 151–156.

    Google Scholar 

  • Moriarty, D. J. W., and Pollard, P. C., 1982, Diel variation of bacterial productivity in sea-grass (Zostera capricorne) beds measured by rate of thymidine incorporation into DNA, Mar. Biol. 72: 165–173.

    Google Scholar 

  • Moriarty, D. J. W., Boon, P., Hansen, J., Hunt, W. G., Poiner, I. R., Pollard, P. C., Skyring, G. W., and White, D. C., 1985a, Microbial biomass and productivity in seagrass beds, Geomicrobiol. J. 4: 21–51.

    PubMed  CAS  Google Scholar 

  • Moriarty, D. W., Pollard, P. C., and Hunt, W. G., 1985b, Temporal and spatial variation in bacterial productivity in coral reef waters, measured by rate of thymidine incorporation into DNA, Mar. Biol. 85: 285–292.

    Google Scholar 

  • Moriarty, D. J. W., Pollard, P. C., Hunt, W. G., Moriarty, C. M., and Wassenberg, T. J., 1985c, Productivity of bacteria and microalgae and the effect of grazing by holothurians on a coral reef flat, Mar. Biol. 85: 293–300.

    Google Scholar 

  • Moriarty, D. J. W., White, D. C., and Wassenberg, T. J., 1985d, A convenient method for measuring rates of phospholipid synthesis and their relevance to the determination of bacterial productivity, J. MicrobioL Meth. 3: 321–330.

    CAS  Google Scholar 

  • Morita, R. Y., 1982, Starvation-survival of heterotrophs in the marine environment, in: Advances in Microbial Ecology, Vol. 6 ( K. C. Marshall, ed.), pp. 171–198, Plenum Press, New York.

    Google Scholar 

  • Munch-Petersen, A., Mygind, B., Nicolaisen, A., and Pihl, N. J., 1979, Nucleoside transport in cells and membrane vesicles from Escherichia coli K12, J. Biol. Chem. 254: 3730–3737.

    CAS  Google Scholar 

  • Munro, H. N., and Fleck, A., 1966, The determination of nucleic acids, in: Methods of Biochemical Analysis ( D. Glick, ed.), pp. 113–176, Interscience, New York.

    Google Scholar 

  • Mygind, B., and Munch-Petersen, A., 1975, Transport of pyrimidine nucleosides in cells of Escherichia coli K12, Eur. J. Biochem. 59: 365–372.

    PubMed  CAS  Google Scholar 

  • Newell, S. Y., and Fallon, R. D., 1982, Bacterial productivity in the water column and sediments of the Georgia (USA) coastal zone: Estimates via direct counting and parallel measurement of thymidine incorporation, Microb. Ecol. 8: 33–46.

    Google Scholar 

  • O’Donovan, G. A., and Neuhard, J., 1970, Pyrimidine metabolism in microorganisms, Bacteriol. Rev. 34: 278–343.

    Google Scholar 

  • Payne, W. J., 1970, Energy yields and growth of heterotrophs, Annu. Rev. MicrobioL 24: 17–52.

    PubMed  CAS  Google Scholar 

  • Pirt, S. J., 1975, Principles of Microbe and Cell Cultivation, Blackwell Scientific, Oxford.

    Google Scholar 

  • Plant, W., and Sagan, A., 1958, Incorporation of thymidine in the cytoplasm of Amoeba proteus, J. Biophys. Biochem. Cytol. 4: 843–847.

    Google Scholar 

  • Poindexter, J. S., 1981, Oligotrophy: Fast and famine existence, in: Advances in Microbial Ecology, Vol. 5 ( M. Alexander, ed.), pp. 63–89, Plenum Press, New York.

    Google Scholar 

  • Pollard, P. C., and Moriarty, D. J. W., 1984, Validity of the tritiated thymidine method for estimating bacterial growth rates: The measurement of isotope dilution during DNA synthesis, Appl. Environ. Microbio!. 48: 1076–1083.

    CAS  Google Scholar 

  • Ramsay, A. J., 1974, The use of autoradiography to determine the proportion of bacteria metabolizing in an aquatic habitat, J. Gen. Microbiol. 80: 363–373.

    Google Scholar 

  • Riemann, B., 1984, Determining growth rates of natural assemblages of freshwater bacteria by means of 3H-thymidine incorporation into DNA: Comments on methodology, Arch. Hydrobiol. Beih. 19: 67–80.

    CAS  Google Scholar 

  • Riemann, B., and Sondergaard, M., 1984, Measurements of diel rates of bacterial secondary production in aquatic environments, Appl. Environ. Microbiol. 47: 632–638.

    PubMed  CAS  Google Scholar 

  • Riemann, B., Fuhrman, J., and Azam, F., 1982, Bacterial secondary production in fresh- water measured by 3H-thymidine incorporation method, Microb. Ecol. 8: 101–114.

    CAS  Google Scholar 

  • Riemann, B., Nielsen, P., Jeppesen, M., Marcussen, B., and Fuhrman, J. A., 1984, Diel changes in bacterial biomass and growth rates in coastal environments, determined by means of thymidine incorporation into DNA, frequency of dividing cells (FDC), and microautoradiography, Mar. Ecol. Prog. Ser. 17: 227–235.

    Google Scholar 

  • Roy-Burman, S., and Visser, D. W., 1975, Transport of purines and deoxyadenosine in Escherichia coli, J. Biol. Chem. 250: 9270–9275.

    PubMed  CAS  Google Scholar 

  • Roy-Burman, S., and Visser, D. W., 1981, Uridine and uracil transport in Escherichia coli and transport-deficient mutants, Biochim. Biophys. Acta 646: 309–319.

    PubMed  CAS  Google Scholar 

  • Sagan, L., 1965, An unusual pattern of tritiated thymidine incorporation in Euglena, J. Protozool. 12: 105–109.

    PubMed  CAS  Google Scholar 

  • Schaechter, M., Maaloe, O., and Kjeldgaard, N. O., 1958, Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium, J. Gen. Microbiol. 19: 592–606.

    PubMed  CAS  Google Scholar 

  • Scott, F. W., and Forsdyke, D. R., 1976, Isotope-dilution studies of the effects of 5-fluorodeoxyuridine and hydroxyurea on the incorporation of deoxycytidine and thymidine by cultured thymus cells, Can. J. Biochem. 54: 238–248.

    PubMed  CAS  Google Scholar 

  • Scott, F. W., and Forsdyke, D. R., 1980, Isotope-dilution analysis of the effects of deoxyguanosine and deoxyadenosine on the incorporation of thymidine and deoxycytidine by hydroxyurea-treated thymus cells, Biochem. J. 190: 721–730.

    PubMed  CAS  Google Scholar 

  • Sieburth, J. McN., Johnson, K. M., Burney, C. M., and Lavoue, D. M., 1977, Estimation of in situ rates of heterotrophy using diurnal changes in dissolved organic matter and growth rates of picoplankton in diffusion culture, Helgol. Wiss. Meeresunters. 30: 565–574.

    CAS  Google Scholar 

  • Sjostrom, D. A., and Forsdyke, D. R., 1974, Isotope-dilution analysis of rate-limiting steps and pools affecting the incorporation of thymidine and deoxycytidine into cultured thymus cells, Biochem. J. 138: 253–262.

    PubMed  CAS  Google Scholar 

  • Smith, W. O., Barber, R. T., and Huntsman, S. A., 1977, Primary production off the coast of Northwest Africa: Excretion of dissolved organic matter and its heterotrophic uptake, Deep Sea Res. 24: 35–47.

    CAS  Google Scholar 

  • Sorokin, Y. I., 1978, Microbial production in the coral reef community, Arch. Hydrobiol. 83: 281–323.

    Google Scholar 

  • Steffensen, D. M., and Sheridan, W. F., 1965, Incorporation of 3H-thymidine into chloroplast DNA of marine algae, J. Cell Biol. 25: 619–626.

    PubMed  CAS  Google Scholar 

  • Stocking, C. R., and Gifford, E. M., 1959, Incorporation of thymidine into chloroplasts of Spirogyra, Biochem. Biophys. Res. Commun. 1: 159–164.

    CAS  Google Scholar 

  • Stone, G. E., and Prescott, D. M., 1964, Cell division and DNA synthesis in Tetrahymena pyriformis deprived of essential amino acids, J. Cell Biot 21: 275–281.

    CAS  Google Scholar 

  • Swings, J., and de Ley, J., 1977, The biology of Zymomonas, Bacteriol. Rev. 41: 1–46.

    CAS  Google Scholar 

  • Swinton, D. C., and Hanawalt, P. C., 1972, In vivo specific labeling of Chlamydomonas chloroplast DNA, J. Cell Biol. 54: 592–597.

    CAS  Google Scholar 

  • Thelander, L., and Reichard, P., 1979, Reduction of ribonucleotides, Annu. Rev. Biochem. 48: 133–158.

    PubMed  CAS  Google Scholar 

  • Tobin, R. S., and Anthony, D. H. J., 1978, Tritiated thymidine incorporation as a measure of microbial activity in lake sediments, Limnol. Oceanogr. 23: 161–165.

    CAS  Google Scholar 

  • Torsvik, V. L., 1980, Isolation of bacterial DNA from soil, Soil Biol. Biochem. 12: 15–21.

    CAS  Google Scholar 

  • Van Es, F. B., and Meyer-Reil, L.-A., 1982, Biomass and metabolic activity of heterotrophic marine bacteria, in: Advances in Microbial Ecology, Vol. 6 ( K. C. Marshall, ed.), pp. 111–170, Plenum Press, New York.

    Google Scholar 

  • Vogels, G. D., and van der Drift, C., 1976, Degradation of purines and pyrimidines by microorganisms, Bacteriol. Rev. 40: 403–468.

    PubMed  CAS  Google Scholar 

  • Wallace, D. C., and Morowitz, H. J., 1973, Genome size and evolution, Chromosoma 40: 121–126.

    PubMed  CAS  Google Scholar 

  • Werner, R., 1971, Nature of DNA precursors, Nature New Biol. 233: 99–103.

    PubMed  CAS  Google Scholar 

  • Williams, P. J. leB., 1984, Bacterial production in the marine food chain: The emperor’s suit of clothes?, in: Flow of Energy and Materials in Marine Ecosystems: Theory and Practice ( M. J. Fasham, ed.), pp. 271–299, Plenum Press, New York.

    Google Scholar 

  • Williams, P. J. leB., and Yentsch, C. S., 1976, An examination of photosynthetic production, excretion of photosynthetic products, and heterotrophic utilization of dissolved organic compounds with reference to results from a coastal subtropical sea, Mar. Biol. 35: 31–40.

    CAS  Google Scholar 

  • Winn, C. D., and Karl, D. M., 1984a, Laboratory calibrations of the [3H]adenine technique for measuring rates of RNA and DNA synthesis in marine microorganisms, Appl. Environ. Microbiol. 47: 835–842.

    PubMed  CAS  Google Scholar 

  • Winn, C. D., and Karl, D. M., 1984b, Microbial productivity and community growth rate estimates in the tropical North Pacific Ocean, Biol. Oceanogr. 3: 123–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moriarty, D.J.W. (1986). Measurement of Bacterial Growth Rates in Aquatic Systems from Rates of Nucleic Acid Synthesis. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0611-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0611-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0613-0

  • Online ISBN: 978-1-4757-0611-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics