Advertisement

r- and K-Selection and Microbial Ecology

  • John H. Andrews
  • Robin F. Harris
Part of the Advances in Microbial Ecology book series (AMIE, volume 9)

Abstract

The essence of the concept of r- and K-selection is that organisms strive to maximize their fitness for survival in either uncrowded (r-selection) or crowded (K-selection) environments. Fitness is defined following ecological convention as the proportion of genes left in the population gene pool (Pianka, 1983, p. 10). The terms r and K refer, respectively, to the maximum specific rate of increase (maximum specific growth rate minus minimum specific death rate) of an organism and to the density of individuals that a given environment can support at the population equilibrium. Since both r and K can vary within a species and are subject to modification, the division of natural selection into r- and K-selection is of considerable basic interest in evolutionary ecology.

Keywords

Specific Growth Rate Specific Rate Life History Strategy Food Density Specific Death Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, J. H., 1984a, Life history strategies of plant parasites, in: Advances in Plant Pathology, Vol. 2 ( D. S. Ingram and P. H. Williams, eds.), pp. 105–130, Academic Press, London.Google Scholar
  2. Andrews, J. H., 1984b, Relevance of r-and K-theory to the ecology of plant pathogens, in: Current Perspectives in Microbial Ecology ( M. J. Klug and C. A. Reddy, eds.), pp. 1–7, American Society for Microbiology, Washington, D.C.Google Scholar
  3. Andrews, J. H., and Rouse, D. I., 1982, Plant pathogens and the theory of r-and K-selection, Am. Nat. 120: 283–296.CrossRefGoogle Scholar
  4. Atlas, R. M., 1982, Enumeration and estimation of microbial biomass, in: Experimental Microbial Ecology ( R. G. Burns and H. J. Slater, eds.), pp. 84–102, Blackwell, Oxford.Google Scholar
  5. Begon, M., and Mortimer, M., 1981, Population Ecology, Sinauer, Sunderland, Massachusetts.Google Scholar
  6. Button, D. K., 1983, Differences between the kinetics of nutrient uptake by microorganisms, growth and enzyme kinetics, Trends Biochem. Sci. 8: 121–124.CrossRefGoogle Scholar
  7. Cody, M. L., 1966, A general theory of clutch size, Evolution 20: 174–184.CrossRefGoogle Scholar
  8. Dobzhansky, T., 1950, Evolution in the tropics. Am. Sci. 38: 209–221.Google Scholar
  9. Dow, C. S., Whittenbury, R., and Carr, N. G., 1983, The “shut down” or “growth precursor” cell-An adaptation for survival in a potentially hostile environment, in: Microbes in Their Natural Environment ( J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 187–247, Cambridge University Press, Cambridge.Google Scholar
  10. Esch, G. W., Hazen, T. C., and Aho, J. M., 1977, Parasitism and r-and K selection, in: Regulation of Parasite Populations ( G. W. Esch, ed.), pp. 9–62, Academic Press, New York.Google Scholar
  11. Esener, A. A., Roels, J. A., and Kossen, N. W. F., 1983, Theory and application of unstructured growth models: Kinetic and energetic aspects, Biotechnol. Bioeng. 25: 2803–2841.PubMedCrossRefGoogle Scholar
  12. Freter, R., 1984, Factors affecting conjugal plasmid transfer in natural bacterial communities, in: Current Perspectives in Microbial Ecology ( M. J. Klug and C. A. Reddy, eds.), pp. 105–114, American Society for Microbiology, Washington, D.C.Google Scholar
  13. Fry, J. C., and Humphrey, N. C. B., 1978, Techniques for the study of bacteria epiphytic on aquatic macrophytes, in: Techniques for the Study of Mixed Populations ( D. W. Lovelock and R. Davies, eds.), pp. 1–29, Academic Press, New York.Google Scholar
  14. Gadgil, M., and Solbrig, O. T., 1972, The concept of r-and K-selection: Evidence from wild flowers and some theoretical considerations, Am. Nat. 106: 14–31.CrossRefGoogle Scholar
  15. Gaines, M. S., Vogt, K. J., Hamrick, J. L., and Caldwell, J., 1974, Reproductive strategies and growth patterns in sunflowers (Helianthus), Am. Nat. 108: 889–894.CrossRefGoogle Scholar
  16. Gerson, U., and Chet, I., 1981, Are allochthonous and autochthonous soil microorganisms r-and K-selected? Rev. Ecol. Biol. Sol. 18: 285–289.Google Scholar
  17. Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  18. Greenslade, P. J. M., 1983, Adversity selection and the habitat templet, Am. Nat. 122: 352–365.CrossRefGoogle Scholar
  19. Grime, J. P., 1974, Vegetation classification by reference to strategies, Nature 250: 26–31.CrossRefGoogle Scholar
  20. Grime, J. P., 1979, Plant Strategies and Vegetation Processes, Wiley, New York.Google Scholar
  21. Hall, B. G., 1984, Adaptation by acquisition of novel enzyme activities in the laboratory, in: Current Perspectives in Microbial Ecology ( M. J. Klug and C. A. Reddy, eds.), pp. 79–86, American Society for Microbiology, Washington, D.C.Google Scholar
  22. Harris, R. F., 1981, Effect of water potential on microbial growth and activity, in: Water Potential Relations in Soil Microbiology ( J. F. Parr, W. R. Gardner, and L. F. Elliot, eds.), pp. 23–95, Soil Science Soceity of America, Madison, Wisconsin.Google Scholar
  23. Harris, R. F., 1982, Energetics of nitrogen transformation, in: Nitrogen in Agricultural Soils ( F. J. Stevenson, ed.), pp. 833–899, American Society of Agronomy, Madison, Wisconsin.Google Scholar
  24. Hirsch, P., Bernhard, M., Cohen, S. S., Ensign, J. C., Jannasch, H. W., Koch, A. L., Marshall, K. C., Matin, A., Poindexter, J. S., Rittenberg, S. C., Smith, C. D., and Veldkamp, H., 1979, Life under conditions of low nutrient, in: Strategies of Microbial Life in Extreme Environments ( M. Shilo, ed.), pp. 357–372, Verlag Chemie, Weinheim.Google Scholar
  25. Jennings, J. B., and Calow, P., 1975, The relationship between high fecundity and the evolution of entoparasitism, Oecologia (Berl.) 21: 109–115.CrossRefGoogle Scholar
  26. Kjelleberg, S., 1984, Effects of interfaces on survival mechanisms of copiotrophic bacteria in low-nutrient habitats, in: Current Perspectives in Microbial Ecology ( M. J. Klug and C. A. Reddy, eds.), pp. 151–159, American Society for Microbiology, Washington, D.C.Google Scholar
  27. Koch, A. L., 1979, Microbial growth in low concentrations of nutrients, in: Strategies of Microbial Life in Extreme Environments ( M. Shilo, ed.), pp. 261–279, Verlag Chemie, Weinheim.Google Scholar
  28. Konings, W. N., and Veldkamp, H., 1980, Phenotypic responses to environmental change, in: Contemporary Microbial Ecology ( D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 159–191, Academic Press, New York.Google Scholar
  29. Konings, W. N., and Veldkamp, H., 1983, Energy transduction and solute transport mechanisms in relation to environments occupied by microorganisms, in: Microbes in Their Natural Environments ( J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), Cambridge University Press, Cambridge.Google Scholar
  30. Kuenen, J. G., and Harder, W., 1982, Microbial competition in continuous culture, in: Experimental Microbial Ecology ( R. G. Burns and H. J. Slater, eds.), pp. 342–367, Blackwell, Oxford.Google Scholar
  31. Kuenen, J. G., and Robertson, L. A., 1984, Competition among chemolithotrophic bacteria under aerobic and anaerobic conditions, in: Contemporary Microbial Ecology ( M. J. Klug and C. A. Reddy, eds.), pp. 306–313, American Society for Microbiology, Washington, D.C.Google Scholar
  32. Lein, J., 1983, Strain development with non-recombinant DNA techniques, Am. Soc. Microbiol. News 49: 576–579.Google Scholar
  33. Luckinbill, L. S., 1978, r-and K-selection in experimental populations of Escherichia coli, Science 202: 1201–1203.Google Scholar
  34. MacArthur, R. H., 1972, Geographical Ecology, Harper and Row, New York.Google Scholar
  35. MacArthur, R. H., and Wilson, E. O., 1967, The Theory of Island Biogeography, Princeton University Press, Princeton, New Jersey.Google Scholar
  36. McNaughton, S. J., 1975, r-and K-selection in Typha, Am. Nat. 109: 251–261.Google Scholar
  37. Morita, R. Y., 1982, Starvation-survival of heterotrophs in the marine environment, in: Advances in Microbial Ecology, Vol. 6 ( K. C. Marshall, ed.), pp. 171–198, Plenum Press, New York.Google Scholar
  38. Murray, B. G., 1982, On the meaning of density dependence, Oecologia (Berl.) 53: 370–373.CrossRefGoogle Scholar
  39. Nye, P. H., and Tinker, P. B., 1977, Solute Movement in the Soil-Root System, University of California Press, Berkeley.Google Scholar
  40. Parry, G. D., 1981, The meanings of r-and K-selection, Oecologia (Berl.) 48: 260–264.CrossRefGoogle Scholar
  41. Peters, R. H., 1976, Tautology in evolution and ecology, Am. Nat. 110: 1–12.CrossRefGoogle Scholar
  42. Pianka, E. R., 1970, On r-and K-selection, Am. Nat. 104: 592–597.CrossRefGoogle Scholar
  43. Pianka, E. R., 1983, Evolutionary Ecology, 3rd ed., Harper and Row, New York.Google Scholar
  44. Pielou, E. C., 1969, An Introduction to Mathematical Ecology, Wiley, New York.Google Scholar
  45. Pirt, S. J., 1975, Principles of Microbe and Cell Cultivation, Blackwell, London.Google Scholar
  46. Poindexter, J. S., 1981, Oligotrophy: Fast and famine existence, in: Advances in Microbial Ecology, Vol. 5 ( M. Alexander, ed.), pp. 63–89, Plenum Press, New York.Google Scholar
  47. Pugh, G. J. F., 1980, Strategies in fungal ecology, Trans. Br. Mycol. Soc. 75: 1–14.CrossRefGoogle Scholar
  48. Roels, J. A., and Kossen, N. W. F., 1978, On the modelling of microbial metabolism, Prog. Industrial Microbiol. 14: 95–203.Google Scholar
  49. Roughgarden, J., 1971, Density-dependent natural selection, Ecology 52: 453–468.CrossRefGoogle Scholar
  50. Smith, F. E., 1963, Population dynamics in Daphnia magna and a new model for population growth, Ecology 44: 651–663.CrossRefGoogle Scholar
  51. Southwood, T. R. E., 1977, The relevance of population dynamic theory to pest status, in: Origins of Pest, Parasite, Disease and Weed Problems ( J. M. Cherrett and G. R. Sagar, eds.), pp. 35–54, Blackwell, London.Google Scholar
  52. Stearns, S. C., 1976, Life-history tactics: A review of the ideas, Q. Rev. Biol. 51: 3–47.PubMedCrossRefGoogle Scholar
  53. Stearns, S. C., 1977, The evolution of life history traits: A critique of the theory and a review of the data, Annu. Rev. Ecol. Syst. 8: 145–171.CrossRefGoogle Scholar
  54. Stearns, S. C., 1980, A new view of life-history evolution, Oikos 35: 266–281.CrossRefGoogle Scholar
  55. Swift, M. J., 1976, Species diversity and the structure of microbial communities in terrestrial habitats, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes ( J. M. Anderson and A. Macfadyen, eds.), pp. 185–222, Blackwell, London.Google Scholar
  56. Swift, M. J., 1982, Microbial succession during the decomposition of organic matter, in: Experimental Microbial Ecology ( R. G. Burns and J. H. Slater, eds.), pp. 164–177, Blackwell, London.Google Scholar
  57. Tempest, D. W., Neijssel, O. M., and Zevenboom, W., 1983, Properties and performance of microorganisms in laboratory culture; their relevance to growth in natural ecosystems, in: Microbes in Their Natural Environment ( J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 119–149, Cambridge University Press, Cambridge.Google Scholar
  58. Tilman, D., 1982, Resource Competition and Community Structure, Princeton University Press, Princeton, New Jersey.Google Scholar
  59. Van Es, F. B., and Myer-Reil, L. A., 1982, Biomass and metabolic activity of heterotrophic marine bacteria, in: Advances in Microbial Ecology, Vol. 6 ( K. C. Marshall, ed.), pp. 111–170, Plenum Press, New York.Google Scholar
  60. Van Verseveld, H. W., Chesbro, W. R., Braster, M., and A. H. Stouthauser, 1984, Eubacteria have 3 modes of growth keyed to nutrient flow, Arch. Microbiol. 137: 176–184.PubMedCrossRefGoogle Scholar
  61. Veldkamp, H., van Gemerden, H., Harder, W., and Laanbroek, H. J., 1984, Competition among bacteria: An overview, in: Current Perspectives in Microbial Ecology ( M. J. Klug and C. A. Reddy, eds.), pp. 279–290, American Society for Microbiology, Washington, D.C.Google Scholar
  62. Wallace, A. R., 1878, Tropical Nature and Other Essays, MacMillan, London.CrossRefGoogle Scholar
  63. Wiens, J. A., 1977, On competition and variable environments, Am. Sci. 65: 590–597.Google Scholar
  64. Wilbur, H. M., 1976, Life history evolution in seven milkweeds of the genus Asclepias, J. Ecol. 64: 223–240.CrossRefGoogle Scholar
  65. Wilbur, H. M., Tinkle, D. W., and Collins, J. P., 1974, Environmental certainty, trophic level, and resource availability in life history evolution, Am. Nat. 108: 805–817.CrossRefGoogle Scholar
  66. Williams, F. M., 1972, Mathematics of microbial populations, with emphasis on open systems, in: Ecological Essays in Honor of G. Evelyn Hutchinson ( E. S. Deevey, ed.), pp. 387–426, Archon, Hamden, Connecticut.Google Scholar
  67. Williams, F. M., 1980, On understanding predator-prey interactions, in: Contemporary Microbial Ecology ( D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 349–375, Academic Press, New York.Google Scholar
  68. Wilson, E. O., 1975, Sociobiology—The New Synthesis, Belknap Press of Harvard University Press, Cambridge, Massachusetts.Google Scholar
  69. Wilson, E. O., and Bossert, W. H., 1971, A Primer of Population Biology, Sinauer, Sunderland, Massachusetts.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • John H. Andrews
    • 1
  • Robin F. Harris
    • 2
  1. 1.Department of Plant PathologyUniversity of WisconsinMadisonUSA
  2. 2.Departments of Soil Science and BacteriologyUniversity of WisconsinMadisonUSA

Personalised recommendations