Advertisement

Benedict-Webb-Rubin Equation of State for Methane at Cryogenic Conditions

  • T. W. Lee
  • S. B. Wyatt
  • S. H. Desai
  • K. C. Chao
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 14)

Abstract

Recent advances in the engineering of cryogenic systems, especially the liquefaction of natural gas, have made new demands on equations of state. Accurate representation of the thermodynamic properties of methane and mixtures containing methane at low temperatures is now required for process calculations.

Keywords

Virial Coefficient Percent Absolute Error Average Absolute Error American Petroleum Institute Cryogenic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Benedict, G. B. Webb, and L. C. Rubin, J. Chem. Pkys., 8:334 (1940).Google Scholar
  2. 2.
    M. Benedict, E. Solomon, and L. C. Rubin, Ind. Eng. Chem., 37:55 (1945).CrossRefGoogle Scholar
  3. 3.
    M. Benedict, G. B. Webb, and L. C. Rubin, J. Chem. Phys., 10:747 (1942).CrossRefGoogle Scholar
  4. 4.
    M. Benedict, G. B. Webb, and L. C. Rubin, Chem. Eng. Progr., 47:419 (1951).Google Scholar
  5. 5.
    H. M. Kvalnes and V. L. Gaddy, J. Am. Chem. Soc., 53:394 (1931).CrossRefGoogle Scholar
  6. 6.
    A. Michels and G. W. Nederbragt, Physica, 3:569 (1936).CrossRefGoogle Scholar
  7. 7.
    D. R. Douslin, R. H. Harrison, R. T. Moore, and J. P. McCullough, J. Chem. Eng. Data, 9:358 (1964).CrossRefGoogle Scholar
  8. 8.
    P. W. Westin, M.S. Thesis, University of Kansas, Lawrence, Kan. (1966).Google Scholar
  9. 9.
    F. G. Keyes, R. S. Taylor, and L. B. Smith, J. Math. Phys., 1:221 (1921).Google Scholar
  10. 10.
    R. H. Olds, H. H. Reamer, B. H. Sage, and W. N. Lacey, Ind. Eng. Chem., 35:922 (1943).CrossRefGoogle Scholar
  11. 11.
    C. S. Matthews and C. O. Hurd, Trans. AIChE, 42:55 (1946).Google Scholar
  12. 12.
    D. W. Dowling and P. T. Eubank, “Calculation of the Compressibility Factor and Thermodynamic Properties of Methane,” Report of Investigation of the American Petroleum Institute Research Project 44, Texas A & M University (November 30, 1966).Google Scholar
  13. 13.
    A. J. Vennix, Ph. D Dissertation, Rice University, Houston, Tex. (1966); also A. J. Vennix, T. W. Leland, Jr., and R. Kobayashi, submitted to: J. Chem. Phys. (June, 1968).Google Scholar
  14. 14.
    A. W. Tickner and F. P. Lossing, J. Pkys. Colloid Chem., 55:733 (1951).CrossRefGoogle Scholar
  15. 15.
    H. H. Stotler and M. Benedict, Chem. Eng, Progr. Sym. Set., 49(6):25 (1953).Google Scholar
  16. 16.
    M. L. Jones, D. T. Mage, R. C. Faulkner, and D. L. Katz, Chem. Eng. Progr. Sym. Ser., 59(44):52 (1963).Google Scholar
  17. 17.
    D. Zudkevitch and T. G. Kaufmann, AIChE J., 12:577 (1966).CrossRefGoogle Scholar
  18. 18.
    A. E. Hoover, Ph.D Dissertation, Rice University, Houston, Tex. (1965); also A. E. Hoover, I. Nagata, T. W. Leland, Jr., and R. Kobayashi, J. Chem. Phys., 48:2633 (1968).Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • T. W. Lee
    • 1
  • S. B. Wyatt
    • 1
  • S. H. Desai
    • 1
  • K. C. Chao
    • 1
  1. 1.Chicago Bridge and Iron CompanyOak BrookUSA

Personalised recommendations