Advertisement

Equilibrium Gas-Phase Compositions of Ethane and Ethylene in Binary Mixtures with Helium and Neon below 150°K and a Correlation for Deviations from the Geometric Mean Combining Rule

  • M. J. Hiza
  • A. G. Duncan
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 14)

Abstract

Recent measurements have provided corresponding sets of equilibrium gas-phase compositions for the binary systems of methane with hydrogen [1–4], helium [5–7], and neon [8] in the solid-vapor region and, with the exception of neon-methane, in the liquid-vapor region. These data are particularly valuable below the normal boiling-point temperature of methane where assumptions made to simplify models representing the gas-phase compositions are most nearly satisfied. Predictions made by means of an expression based on the virial equation and commonly used empirical mixing rales were found to be least satisfactory for the neon and helium systems. It was concluded, in discussing this difficulty for the neon-methane system [8], that the failure in the calculations is most probably due to the lack of a rigorous method of relating parameters for unlike-molecule interactions to those for like-molecule interactions.

Keywords

Enhancement Factor Virial Coefficient Virial Equation Ethylene System Normal Boiling Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. S. Kirk and W. T. Ziegler, in: International Advances in Cryogenie Engineering, Plenum Press, New York (1965), p. 160.Google Scholar
  2. 2.
    M. J. Hiza and R. N. Herring, International Advances in Cryogenie Engineering, Plenum Press, New York (1965), p. 182.Google Scholar
  3. 3.
    Z. Dokoupil, in: Progress in Low-Temperature Physics, Vol. III, Interscience Publishers, New York (1961), p. 454.CrossRefGoogle Scholar
  4. 4.
    A. L. Benham and D. L. Katz, AIChE., 3(1): 33 (1957).CrossRefGoogle Scholar
  5. 5.
    M. J. Hiza and A. J. Kidnay, in: Advances in Cryogenic Engineering, Vol. 11, Plenum Press, New York (1966), p. 338.CrossRefGoogle Scholar
  6. 6.
    C. K. Heck and M. J. Hiza, AIChE J., 13(3):593 (1967).CrossRefGoogle Scholar
  7. 7.
    J. E. Sinor, D. L. Schindler, and Fred Kurata, AIChE J., 12(2):353 (1966).CrossRefGoogle Scholar
  8. 8.
    M. J. Hiza and A. J. Kidnay, Cryogenics, 6(6):348 (1966).CrossRefGoogle Scholar
  9. 9.
    C. A. Eckert, Henri Renon, and J. M. Prausnitz, Ind. Eng. Chem. Fund., 6(1):58 (1967).CrossRefGoogle Scholar
  10. 10.
    P. L. Chueh and J. M. Prausnitz, AIChE J., 13(5):896 (1967).CrossRefGoogle Scholar
  11. 11.
    P. L. Chueh and J. M. Praesnitz, Ind. Eng. Chem. Fund., 6(4):492 (1967).CrossRefGoogle Scholar
  12. 12.
    M. J. Hiza, C. K. Heck, and A. J. Kidnay, in: Advances in Cryogenic Engineering, Vol. 13, Plenum Press, New York (1968), p. 343.Google Scholar
  13. 13.
    M. J. Hiza, C. K. Heck, and A. J. Kidnay, Chem. Eng. Progr. Syrup. Ser., in press.Google Scholar
  14. 14.
    R. B. Williams and D. L. Kate, Ind. Eng. Chem., 46(12):2512 (1954).CrossRefGoogle Scholar
  15. 15.
    C. K. Heck, Ph.D. Dissertation, University of Colorado, Boulder (1968).Google Scholar
  16. 16.
    D. S. Tsiklis, Doklady Akad. Nauk. S.S.S.R., 91(6):1361 (1953).Google Scholar
  17. 17.
    J. M. Prausnitz and A. L. Myers, AIChE J., 9(1):5 (1963).CrossRefGoogle Scholar
  18. 18.
    W. T. Ziegler, B. S. Kirk, J. C. Mulling, and A. R. Berquist, “Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids Below One Atmosphere Pressure. VII Ethane.” Contract No. CST-1154, National Standard Reference Data Program, NBS, Washington, D.C. (December 31, 1964).Google Scholar
  19. 19.
    W. T. Ziegler, B. S. Kirk, and J. C. Mullins, “Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids Especially Below One Atmosphere Pressure. I Ethylene.” Contract No. CST-7238 NBS, Boulder, Colorado (June 2, 1962).Google Scholar
  20. 20.
    D. B. Mann, NBS Tech. Note 154 (January, 1962).Google Scholar
  21. 21.
    J. M. Prausnitz, private communication (November, 1966).Google Scholar
  22. 22.
    R. D. McCarty and R. B. Stewart in: Advances in Thermophysical Properties at Extreme Temperatures and Pressures, A.S.M.E., New York (1965), p. 84.Google Scholar
  23. 23.
    J. M. Prausnitz, private communication, (September, 1967).Google Scholar
  24. 24.
    J. M. Prausnitz, private communication, (January, 1968).Google Scholar
  25. 25.
    M. Benedict, G. B. Webb, and L. C. Rubin, Chem. Eng. Prog., 47(8):419 (1951).Google Scholar
  26. 26.
    L. S. Eubanks, Ph.D. Dissertation, Rice Institute, Houston, Tex. (1957).Google Scholar
  27. 27.
    International Critical Tables, Vol 6, McGraw-Hill Book Co., New York (1929), p. 69.Google Scholar
  28. 28.
    K. S. Pitzer in: Advances in Chemical Physics, Vol. II, Interscience Publishers, New York (1959), p. 71.Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • M. J. Hiza
    • 1
  • A. G. Duncan
    • 1
  1. 1.NBS Institute for Basic StandardsBoulderUSA

Personalised recommendations