Advertisement

Slush and Subcooled Propellants for Lunar and Interplanetary Missions

  • J. L. Vaniman
  • A. L. Worlund
  • T. W. Winstead
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 14)

Abstract

Future orbital lunar, and Interplanetary space flights require long-term storage of cryogens for life support, power from fuel cells, and propulsion. Successful accomplishment of these missions Is enhanced by optimization of high-performance Insulation and other system conditions such as Initial cryogenic state (e.g.. subcooled or slush).

Keywords

Storage System Storage Duration Storage Container Thermal Protection System Cryogenic Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.F. Sindt and D. B. Mann, NBS Tech. Note 343 (June, 1966).Google Scholar
  2. 2.
    J. C. Mullins, W. T. Ziegier, and B. S. Kirk, “Thermodynamic. Properties of Oxygen from to 100°K,” Georgia Institute of Technology, Tech. Rept. No. 2 (March, 1962).Google Scholar
  3. 3.
    O. R. Brock and D. W. Goodwin, “Thermal Protection Systems for Cryogenic Propellants on Interplanetary Space Vehicles. Vol. II: Thermal Protection Systems for Five Interplanetary Vehicles,” NASA CR-79991, General Dynamics, Fort Worth, Tex. PZA-416–11 (September, 1966).Google Scholar
  4. 4.
    “Saturn V/S-IVB Stage Orbital Vent System Backup Study,” Douglas Missiles and Space Division, SM-47202 (May, 1965).Google Scholar
  5. 5.
    R. S. Cowls, “Feasibility of Modifying the S-IVB Stage as an Injection Stage for Manned Planetary Flyby Missions,” Douglas Aircraft Co., DAC 57999 (April, 1967).Google Scholar
  6. 6.
    C. W. Keller, “A Study of Hydrogen Slush and/or Hydrogen Gel Utilization,” Lockheed Missile and Space Co., Fourth Quarterly Progress Rept. K-11–68-ID (May, 1968).Google Scholar
  7. 7.
    “Modular Nuclear Vehicle,” Lockheed Missiles and Space Company Study Phase II, LMSC A830244 (February, 1968).Google Scholar
  8. 8.
    D. G. Barry, “An Analytical Study of Storage of Liquid Hydrogen Propellant for Nuclear Interplanetary Spacecraft,” General Dynamics/Fort Worth, Div., Third Quarterly Progress Rept. FPR-046 (March, 1968).Google Scholar
  9. 9.
    “Cryogenic Storage System Study (AES Payloads) Program,” Boeing Co. Rept. D2–113345 (August, 1966).Google Scholar
  10. 10.
    R. L. Jones, “Study of Manned Planetary Flyby Missions Based on Saturn V/Apollo Systems,” North American Aviation, Inc., Space Div., SID-67–549–6–1 (August, 1967)..Google Scholar
  11. 11.
    “OWS/MDA Environmental Analysis/Expendable Commodity Requirements,” Martin Marietta Corp., Bi-Monthly Status Rept. ED-2002–560–1 (July, 1968).Google Scholar
  12. 12.
    C. R. Ellsworth, F. E. Digesu, F. E. Goerner, and H. F. Thomoe, “Early Saturn V Workshop,” NASA/MSFC, unpublished report (May, 1968).Google Scholar
  13. 13.
    B. Gerth and R. Lundeen, “Development of Supercritical Pressure Cryogenic Storage and Supply Systems Incorporating the Radial Bumper-—Discrete Shield Design,” Bendix Corp. Publication No. 3873–67 LER56 (April, 1968).Google Scholar
  14. 14.
    C. W. Elrod, in: SAB Conference Proceedings on Aerospace Fluid Power Systems and Equipment, Report A65–28019 17–03, Los Angeles, Calif. (1965), p. 192.Google Scholar
  15. 15.
    C. F. Fails, C. R. Baker, and J. D. Brunt, “Slush Hydrogen Production, Storage, and Distribution Study Program,” Union Carbide Corp., Linde Division, Contract SNPC-41, Final Rept. (May, 1966).Google Scholar
  16. 16.
    R. R. Carney, in: Advances in Cryogenic Engineering, Vol. 9, Plenum Press, New York (1964), p. 529.Google Scholar
  17. 17.
    C. W. Elrod, “Large Scale Slush Hydrogen Production Experiments,” APAPL-TR-65–63 (1965).CrossRefGoogle Scholar
  18. 18.
    D. B. Mann, P. R. Ludtke, C. F. Sindt, D. B. Chelton, D. E. Daney, and G. L. Pollack, NBS Rept. 8881 (October, 1965).Google Scholar
  19. 19.
    D. B. Mann, C. F. Sindt, P. R. Ludtke, and D. B. Chelton, NBS Rept. 9265 (December, 1966).Google Scholar
  20. 20.
    D. E. Daney, P. R. Ludtke, C. F. Sindt, and D. B. Chelton, NBS Rept. 9701 (December, 1967).Google Scholar
  21. 21.
    N. E. Stanley, D. P. Hilgenberg, D. J. Hollweger, J. L. McDaniels, R. L. Rhoton, and J. S. Shaw, “Subcooled and Slush Hydrogen Properties, Systems Characteristics and Design Methods,” McDonnell Rept. F65–76–941, Progress Rept. 004 (January-June, 1967).Google Scholar
  22. 22.
    D. H. Weitzei, C. F. Sindt, and D. E. Daney, in: Advances in Cryogenic Engineering, Vol. 13, Plenum Press, New York (1968), p. 523.Google Scholar
  23. 23.
    C. W. Keller, “A Study of Hydrogen Slush and/or Hydrogen Gel Utilization,” Lockheed Missiles and Space Co. Rept. K-11–67–1, Vol. II (March, 1967).Google Scholar
  24. 24.
    D. E. Daney and D. B. Mann, Cryogenics, 7(5):280 (1967).CrossRefGoogle Scholar
  25. 25.
    L. H. Gross and C. D. Miller, “An Experimental Study of Hydrogen Slush Pumping Characteristics,” NASA/MSFC, IN-P&VE-P68–3 (August, 1968).Google Scholar
  26. 26.
    D. E. Daney, P. R. Ludtke, D. B. Chelton, and C. F. Sindt, NBS Tech. Note 364 (April, 1968).Google Scholar
  27. 27.
    R. F. Dwyer, G. A. Cook, and D. H. Stellricht, I & EC Product Research and Development, 3:316 (December, 1964).CrossRefGoogle Scholar
  28. 28.
    N. E. Stanley, “Engineering Study of Slush Hydrogen Generation, Transporting, Storage, and Transfer Techniques,” McDonnell Aircraft Co. Progress Rept. 002 (December, 1965).Google Scholar
  29. 29.
    N. E. Stanley and C. W. Elrod, “Generation and Loading of Triple-Point Hydrogen for High-performance Aircraft, Boosters and Spacecraft,” AIAA Paper 67–468, presented at AIAA 3rd Propulsion Joint Specialist Conf., Washington, D.C. (July, 1967).Google Scholar
  30. 30.
    C. C. Wood and H. G. Paul, in: First Intern, Cryogenic Engineering Conference, Heywood Temple, London (April, 1967), p. 13.Google Scholar
  31. 31.
    L. J. Poth, “Study of Cryogenic Propellant Stratification Reduction Techniques,” General Dynamics/Fort Worth, FZA-419–1 (September, 1967).Google Scholar
  32. 32.
    J. A. Stark and M. H. Blatt, “Cryogenic Zero-Gravity Prototype Vent System,” General Dynamics/Convair, GDC-DDB67–006 (October, 1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • J. L. Vaniman
    • 1
  • A. L. Worlund
    • 1
  • T. W. Winstead
    • 1
  1. 1.NASA George C. Marshall Space Flight CenterHuntsvilleUSA

Personalised recommendations