Non-Boiling and Film Boiling Heat Transfer to a Saturated Bath of Liquid Helium

  • J. S. Goodling
  • R. K. Irey
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 14)


It is well known that the liquid phase of the normal isotope 4He exhibits some unique physical properties and thus, heat transfer characteristics [1–5]. In discussing previous investigations of heat transfer from solid surfaces to the superfluid, helium-II, it is convenient to distinguish three regions: (1) nonfilm boiling; (2) transition to film boiling; and (3) film boiling.


Heat Transfer Heat Transfer Coefficient Test Section Bath Temperature Test Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. T. Lane, Superfluid Physics, McGraw-Hill Book Co., New York (1962).Google Scholar
  2. 2.
    K. R. Atkins, Liquid Helium, Cambridge University Press, Cambridge (1959).Google Scholar
  3. 3.
    J. Wilks, The Properties of Liquid and Solid Helium, Clarendon Press, Oxford (1967).Google Scholar
  4. 4.
    E. M. Lifshitz and E. L. Andronikashvili, A Supplement to Helium, Consultants Bureau, Inc., New York (1959).Google Scholar
  5. 5.
    F. London, Superfluids, Volume II, Macroscopic Theory of Superfluid Helium, John Wiley and Sons, New York (1954).Google Scholar
  6. 6.
    P. L. Kapitza, J. Physics (USSR), 43(3):181 (1941).Google Scholar
  7. 7.
    K. Dransfeld and J. Wiiks, Low Temperature Physics and Chemistry, University of Wisconsin Press, Madison, Wis. (1958), p. 39.Google Scholar
  8. 8.
    L. J. Challis, K. Dransfeld, and J. Wilks, Proc. Roy. Soc. (London), A260:31 (1961).Google Scholar
  9. 9.
    K. Wey-Yen, J. Exp. Theor. Phys. USSR, 42(4):921 (1962); translated in Sov. Phys., JETP, 15(4):635 (1962).Google Scholar
  10. 10.
    R. C. Johnson, Ph.D. Dissertation, Stanford University, Palo Alto, Calif. (1962); Univ. Microfilms, LC Card No. 63–2722.Google Scholar
  11. 11.
    R. K. Irey, P. W. McFadden, and R. A. Madsen, in: International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 361.Google Scholar
  12. 12.
    R. A. Madsen, Ph.D. Dissertation, Purdue University, Lafayette, Ind. (1965).Google Scholar
  13. 13.
    R. M. Holdredge and P. W. McFadden, in: Advances in Cryogenic Engineering, Vol. 11, Plenum Press, New York (1965), p. 507.Google Scholar
  14. 14.
    I. M. Khalatnikov, J. Exp. Theor. Phys. (USSR), 22:678 (1952).Google Scholar
  15. 15.
    L. Rinderer and F. Haenseler, Helvetica Physica Acta, 2(4):322 (1959).Google Scholar
  16. 16.
    T. H. K. Frederking, Forschung, 27:17 (1961).Google Scholar
  17. 17.
    D. N. Lyon, in: International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 371.Google Scholar
  18. 18.
    P. W. McFadden and R. M. Holdredge, in: Bull. Inst. Intern. Froid, Commission I Annexe 1965–2, p. 259.Google Scholar
  19. 19.
    T. H. K. Frederking and R. L. Haben, Cryogenics, 8(1):32 (1968).CrossRefGoogle Scholar
  20. 20.
    E. L. Andronikashvili and G. G. Mirskaia, J. Exp. Theor. Phys. (USSR), 29:490 (1955); translated in Sov. Phys., JETP., 2(3):406 (1956).Google Scholar
  21. 21.
    P. Bussieres and A. C. Leonard, Cryogenic News, 2:4 (1967).Google Scholar
  22. 22.
    G. P. Lemieux and A. C. Leonard, “Film Boiling Heat Transfer Properties of Liquid Helium» II for a 76.2ft Diameter Wire at Depths of Immersion up to 70 Centimeters,” ASME Paper 67-WA/HT-37, (1967).Google Scholar
  23. 23.
    B. W. Clement and T. H. K. Frederking, Third Intl. Heat Transfer Conf., Vol. 1 (1966), p. 299.Google Scholar
  24. 24.
    T. H. K. Frederking, in: International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 353.Google Scholar
  25. 25.
    T. H. K. Frederking, Kept. No. 62–5, Dept. Eng., UCLA, Los Angeles (1962).Google Scholar
  26. 26.
    V. J. Johnson, ed., A Compendium of the Properties of Materials at Low Temperatures (Phase I) Part II, Properties of Solids, WADD Tech. Rept. 60–56 (1960).Google Scholar
  27. 27.
    A. C. Anderson, W. Reese, and J. C. Wheatiey, Rev. Sci. Inst., 34:1386 (1963).CrossRefGoogle Scholar
  28. 28.
    J. C. Wheatiey, Rev. Sci. Inst, 35(6):765 (1964).CrossRefGoogle Scholar
  29. 29.
    G. Ahîers and J. F. Macre, Rev. Sci. Inst., 37(3):962 (1965).Google Scholar
  30. 30.
    J. R. Clement, E. H. Quinnel, M. C. Steele, R. A. Hein, and R. L. Dolecek, Rev. Sci. Inst., 24:545 (1953).CrossRefGoogle Scholar
  31. 31.
    S. S. Kutateladze, Heat Transfer in Condensation and Boiling, 2nd ed., Sta. Sci. and Tech. Pub. of Lit. on Machinery, Moscow (1952).Google Scholar
  32. 32.
    B. P. Breen and J. W. Westwater, Chem. Eng. Progr., 58(7):67 (1962).Google Scholar
  33. 33.
    M. D. Reeber, J. Appl. Phys., 34:481 (1963).CrossRefGoogle Scholar
  34. 34.
    R. K. Irey, unpublished data (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • J. S. Goodling
    • 1
  • R. K. Irey
    • 1
  1. 1.University of FloridaGainesvilleUSA

Personalised recommendations