Advertisement

Effects of Nucleate Cooling Limits on the Performance of Small Ti-Nb Solenoids

  • V. Purdy
  • T. H. K. Frederking
  • R. W. Boom
  • C. A. Guderjahn
  • G. A. Domoto
  • C. L. Tien
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 14)

Abstract

Superconducting solenoids have been made practical by the use of composite conductors (i.e., a superconductor coated with a normal metal—usually copper) [1–4]. One type of design uses wire with a single superconductor core coated with copper and wound into a conventional (multiturn) magnet. The individual turns are separated so that most of the conductor surface is in contact with the saturated helium bath. With these magnets, an important part of the design problem is the selection of the copper thickness. One approach to this problem specifies that enough copper must be present so as to limit the heat flux through the surface of a locally quenched section of winding to the nucleate cooling limit of the liquid helium bath. In the last few years, this design method [1] has been used to make large cabled and strip magnets but has not been applied to small laboratory solenoids.

Keywords

Average Current Density Composite Conductor Heated Section Outer Section Composite Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. N. Whetstone, G. G. Chase, J. W. Raymond, J. B. Vetrano, R. W. Boom, A. G. Prodell, and H. A. Worwetz, IEEE Trans. Mag, MAG-2(3):307 (1966).CrossRefGoogle Scholar
  2. 2.
    C. Laverick, in: Proc. of First International Cryogenic Engineering Conference, Heywood-Temple, London (1968), p. 87.Google Scholar
  3. 3.
    Z. J. J. Stekly, A. M. Hatch, J. L. Zar, W. N. Latham, C. Borchert, A. El. Bindari, R. E. Bernert, and T. A. de Winter, in: Liquid Helium Technology, Bull, IIR Annexe, 1966–5, p. 491.Google Scholar
  4. 4.
    H. Brechna, W. Haldeman, and A. D. McInturff, in: Advances in Cryogenic Engineering, Vol. 13, Plenum Press, New York (1968), p. 116.Google Scholar
  5. 5.
    C. N. Whetstone and R. W. Boom, in: Advances in Cryogenic Engineering, Vol. 13, Plenum Press, New York (1968), p. 68.Google Scholar
  6. 6.
    Z. J. J. Stekly, J. Appl. Phys. 37:324 (1966).CrossRefGoogle Scholar
  7. 7.
    M. N. Wilson, in: Proc. Intern. Conference on Magnet Technology, Oxford (1967), p. 482.Google Scholar
  8. 8.
    A. D. Mclnturff, G. G. Chase, C. N. Whetstone, and R. W. Boom, J. Appl. Phys. 38:524 (1967).CrossRefGoogle Scholar
  9. 9.
    R. E. Hintz, in: Advances in Cryogenic Engineering, Vol. 13, Plenum Press, New York (1968), p. 51.Google Scholar
  10. 10.
    S. G. Sydoriak and T. R. Roberts, J. Appl. Phys. 28:143 (1957).CrossRefGoogle Scholar
  11. 11.
    M. N. Wilson, in: Liquid Helium Technology, Bull. IIR Annexe, 1966–5, p. 109.Google Scholar
  12. 12.
    A. Lapin, H. C. Torten, and L. A. Wenzel, AIChE J. 11:503 (1965).CrossRefGoogle Scholar
  13. 13.
    S. G. Sydoriak and T. R. Roberts, in: Liquid Helium Technology, Bull. IIR Annexe, 1966–5, p. 115.Google Scholar
  14. 14.
    D. N. Lyon, International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 371Google Scholar
  15. 14a.
    D. N. Lyon, Chem. Eng. Progr. Symp. Series, 64(87):82 (1968).Google Scholar
  16. 15.
    S. Levy, “Boiling and Two-Phase Plow,” University of California, Lecture Series (May 1965), p. 81.Google Scholar
  17. 16.
    T. H. K. Frederking and C. Linnet, in: Advances in Cryogenic Engineering, Vol. 13, Plenum Press, New York (1968), p. 80.Google Scholar
  18. 17.
    E. R. G. Eckert and R. M. Drake, Heat and Mass Transfer, McGraw-Hill Book Co. (1959), p. 332.Google Scholar
  19. 18.
    S. S. Kutateladze, Izv. Akad. Nauk. USSR, Old. Tekh. Nauk, 4:529 (1951).Google Scholar
  20. 19.
    R. Carruthers, D. N. Cornish, and R. Hancox, in: Proc. First International Cryogenic Engineering Conference, Heywood-Temple, London (1968), p. 107.Google Scholar
  21. 20.
    D. B. Montgomery, in: Proc. First International Cryogenic Engineering Conference, Heywood— Temple, London (1968), p. 81.Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • V. Purdy
    • 1
  • T. H. K. Frederking
    • 1
  • R. W. Boom
    • 2
  • C. A. Guderjahn
    • 2
  • G. A. Domoto
    • 3
  • C. L. Tien
    • 3
  1. 1.University of CaliforniaLos AngelesUSA
  2. 2.Atomics InternationalCanoga ParkUSA
  3. 3.University of CaliforniaBerkeleyUSA

Personalised recommendations