Air Core Cryogenic Magnet Coils for Fusion Research and High-Energy Nuclear Physics Applications

  • R. F. Post
  • C. E. Taylor
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 5)


In the fields of controlled fusion research and high-energy nuclear physics it is becoming evident that means for the efficient generation of very high magnetic fields must be sought. Since ferromagnetic materials are of no help at the required fields of 105 gauss, one can only rely on the use of air core coils, so that the fields which can be reached depend only on the ampere-turns achievable and simple geometrical factors. In this case the limitations on attainable fields usually come down to a question of available electrical power, or, more fundamentally, to limitations imposed by heating of the coil conductors and problems of heat transfer within the coil. For laboratory — sized magnets, the limit is reached in magnets such as the Bitter magnet, where the ultimate limit is nearly reached in power density and heat transfer while achieving steady fields of 105 gauss in volumes of the order of 1 liter.


High Magnetic Field Magnet Loss Magnet Coil Refrigeration Cycle Magnetic Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Olsen, Helvetica Phys. Acta, Vol. 26, p. 798 (1953).Google Scholar
  2. 2.
    H. Furth and R. W. Wanlek, Rev. Sci, Inst., Vol. 27, p. 195 (1956).CrossRefGoogle Scholar
  3. 3.
    H. Laquer and E. F. Hammel, Rev, Sci. Inst., Vol. 28, p. 875 (1957).CrossRefGoogle Scholar
  4. 4.
    D.R. Wells, Project Matterhorn Technical Memo-NYO-6375 (September, 1956).Google Scholar
  5. 5.
    R. F. Post, UCRL-4231 (1954).Google Scholar
  6. 6.
    R. F. Post, Phys. Rev., Vol. 69, p. 126 (1946).CrossRefGoogle Scholar
  7. 7.
    D. K. C. MacDonald, Handbuch der Physik, Vol. 14.Google Scholar
  8. 8.
    D. K. C.. MacDonald, Proc. Roy. Soc. A202, p. 103 (1950).Google Scholar
  9. 9.
    F. Bitter, Rev. Sci. Inst, Vol.7, p. 379 (1936);Google Scholar
  10. 9a.
    F. Bitter, Rev. Sci. Inst,Vol. 8, p. 318 (1937); andCrossRefGoogle Scholar
  11. 9b.
    F. Bitter, Rev. Sci. Inst,Vol. 10, p. 373 (1939).CrossRefGoogle Scholar
  12. 10.
    D. K. C. MacDonald, Proc. Roy. Soc. 221, p. 534 (1954).CrossRefGoogle Scholar
  13. 11.
    A. N. Gennetsen, Handbuch der Physik, Vol. 14, p. 210.Google Scholar
  14. 12.
    D. K. C. MacDonald and K. Mendelssohn, “The resistivity of Na at low temperatures,” Proc. Roy. Soc. A202, p. 103 (1950).Google Scholar
  15. 13.
    G. W. Horsley, “The purification of sodium by vacuum distillation,” AERE, Report M/R, p. 1152 (1953).Google Scholar
  16. 14.
    D. K. C. MacDonald, G. K. White, and S.B. Woods, Proc. Roy. Soc. A235, p. 358 (1956).Google Scholar
  17. 15.
    R. J. Corruccini, Chem. Eng. Prog., Vol. 53, pp.262,342, and 397 (1957).Google Scholar
  18. 16.
    D. Gugan and J. S. Dugdale, Canadian Journal of Physics, Vol. 36, 1248 (1958).CrossRefGoogle Scholar
  19. 17.
    R. G. Chambers, Proc. Roy. Soc. A238, p. 344 (1956).Google Scholar
  20. 18.
    S. C.. Olsen and L. Rinderer, Nature, Vol. 173, p. 682 (1954).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1960

Authors and Affiliations

  • R. F. Post
    • 1
  • C. E. Taylor
    • 1
  1. 1.Lawrence Radiation LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations