Skip to main content

Application of the Corresponding States Principle to Mixtures of Low Molecular Weight Gases at Low Temperatures and Elevated Pressures

  • Conference paper
  • 421 Accesses

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 6))

Abstract

There are two main avenues of approach in applying the corresponding states principle to multicomponent systems. One is through the use of reduced virial coefficients introduced by Guggenheim [1], Guggenheim and McGlashan [2], and further developed by Prausnitz and Gunn [3]. The other is through the use of composition dependent pseudo- critical properties proposed originally by Kay [4] with later improvements by Joffe [5], Stewart et al. [6] and Leland and Mueller [7]. The method of reduced virials is more rigorous theoretically but tine thermo-dynamic properties evaluated from it are limited to conditions under which the gas behavior can be described by equations involving only the second virial. The method of pseudo-criticals, while more empirical in nature, does not completely neglect the effect of higher virials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. A. Guggenheim, Mixtures, 154–165, Clarendon Press, Oxford (1952).

    Google Scholar 

  2. E. A. Guggenheim and M. I. McGlashan, Proc. Roy. Soc (London), Vol. A206, 448 (1951).

    Google Scholar 

  3. J.M. Prausnitz and R.D. Gum, A. I. Ch. E. Jour., Vol. 4, 430 (1958);

    Article  Google Scholar 

  4. ibid., Vol. 4, 494 (1958).

    Article  Google Scholar 

  5. W. B. Kay, Ind. Eng. Chem., Vol. 33, 590 (1941).

    Article  Google Scholar 

  6. J. Joffe, Ind. Eng, Chem., Vol. 39, 837 (1947).

    Article  Google Scholar 

  7. W. E. Stewart, S. P. Burkhardt, and D. Voo, Paper presented at A. I. Ch. E. National Meeting, Kansas City, Mo., May 18 (1959).

    Google Scholar 

  8. T.W. Leiand Jr. and W.H. Mueller, Ind. Eng. Chem., Vol. 51, 591 (1959).

    Google Scholar 

  9. J.E. Kilpatrick, J. Chem. Phys., Vol. 21, 274 (1953).

    Article  Google Scholar 

  10. F. London, Z. Physik, Vol. 63, 245 (1930);

    Article  Google Scholar 

  11. ibid., Vol, 60, 491 (1930).

    Article  Google Scholar 

  12. P. London Trans. Faraday Soc., Vol, 33, 8 (1937).

    Article  Google Scholar 

  13. G. E. Uhlenbeck and E. Beth, Physics, Vol, 3, 729 (1936).

    Google Scholar 

  14. J.G. Kirkwood, Phys, Rev., Vol. 44, 31 (1933).

    Article  Google Scholar 

  15. K.S. Pitzer, J. Chem. Phys., Vol. 7, 583 (1939).

    Article  Google Scholar 

  16. R.J. Limbeck, Doctoral Dissertation, Amsterdam (1950).

    Google Scholar 

  17. J. de Boer, Physics, Vol. 14, 139 (1948);

    Google Scholar 

  18. ibid., Vol, 14, 149 (1948);

    Google Scholar 

  19. ibid., Vol. 14, 520 (1948).

    Google Scholar 

  20. J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird, Molecular Theory of Gases, and Liquids, John Wiley and Sons, New York (1954).

    Google Scholar 

  21. W.H. Mueller, Ph.D. Thesis in Ch.E., Rice University, Dec. (1959).

    Google Scholar 

  22. W. H. Mueller, R. Kobayashi, and T.W. Leiand Jr., Paper presented at International Congress of Chemical Engineerieg, Joint Meeting of Institute Mexicano de Ingenieras Quimicos and A. I. Ch, E., June 19–22 (1960), Mexico City, D. F.(Publication forthcoming).

    Google Scholar 

  23. A. Michels, W. de Graaff, T. Wassenaar, J.M.H. Levelt, and P. Lowerse, Physics, Vol. 25, 25 (1959).

    Google Scholar 

  24. H. W. Wooliey, R. B. Scott, and P.O. Brickwedde, Nat. Bur. Std. Jour. Res., Vol. 41, 379 (1948).

    Article  Google Scholar 

  25. K. Shifer, Z. Phys, Chem., Vol. 136, 85 (1937).

    Google Scholar 

  26. W.H. Mueller, T.W. Leiand Jr., and R. Kobayaski, Paper presented at International Congress of Chemical Engineering, Joint Meeting of Institute Mexicano de Ingenieros Quimicos and A. I. Ch. E., June 19–22 (1960), Mexico City, D. F. (Publication forthcoming in A. I. Ch, E. Journal).

    Google Scholar 

  27. H.W. Schamp Jr., E.A. Mason, A.C.B. Richardson, and A. Altman, Phys. of Fluids, Vol. 1, 329 (1958).

    Article  Google Scholar 

  28. A. L. Lyderson, R. A. Greenkorn, and O. A. Hougen, “Generalized Thermodynamic Properties of Pure Fluids,” Univ. of Wis., Engr. Expt. Station, Rept. No, 4, Madison, Wisc. (1955).

    Google Scholar 

  29. W. H. Keesom, Helium, Chap. 2, Elsevier Press, New York (1942).

    Google Scholar 

  30. J. Otto, Handbuch der Experimentalphysik, Bd. 8, Part 2, 79, Leipzig (1929).

    Google Scholar 

  31. W.G. Schneider and J. A.H. Puffie, J. Chem, Phys.. Vol. 17, 751 (1949).

    Article  Google Scholar 

  32. L. Holtoni and J. Otto, Z. Physik, Vol. 23, 77 (1924).

    Article  Google Scholar 

  33. L. Boltorn and J. Otto, Z. Physik, Vol. 38, 359 (1926).

    Article  Google Scholar 

  34. A. Michels, G. P. Nijhoff and A. J. Gerver, J. Am, Physik, Vol, 12, 562 (1932).

    Google Scholar 

  35. J. Mizushima, K. Ono, and A. Ohno, J. Chem. Phys., Vol, 21, 2107 (1953).

    Article  Google Scholar 

  36. L. Holborn and J. Otto, Z. Physik, Vol, 33, 1 (1925).

    Article  Google Scholar 

  37. E. Kanda, Science Repts. Research Insts, Tohoku Univ., Ser, E. Vol. 1, 157 (1946).

    Google Scholar 

  38. C.M. Knobler, J. J.M. Beemakker, and H.F.P. Knapp, Physica, Vol. 25, 909 (1959).

    Article  Google Scholar 

  39. G.M. Kramer and j.G. Miller, J. Phys, Chem., Vol 61, 785 (1957).

    Article  Google Scholar 

  40. R.C. Harper Jr. and J.G. Miller, Chem. Phys., Vol. 27, 36 (1957).

    Google Scholar 

  41. R. J. Lunbeck and A. J. H. Boerboom, Physica, Vol. 17, 76. (1951).

    Article  Google Scholar 

  42. R. A. Gorski and j.G. Miller, J. Am. Chem. Soc., Vol. 75, 550 (1953).

    Article  Google Scholar 

  43. T. L. Cottrell et al., Trans. Faraday Soc., Vol. 52, 156, 310 (1956).

    Google Scholar 

  44. J. Peuss and J. J.M. Beennakker, Physics, Vol. 22, 869 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1961 Springer Science+Business Media New York

About this paper

Cite this paper

Leland, T.W., Kobayashi, R., Mueller, W.H. (1961). Application of the Corresponding States Principle to Mixtures of Low Molecular Weight Gases at Low Temperatures and Elevated Pressures. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0534-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0534-8_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0536-2

  • Online ISBN: 978-1-4757-0534-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics