Volumetric Behavior of Gas Mixtures at Low Temperatures by the Burnett Method: The Helium-Nitrogen System, 0° to -140°C

  • F. B. Canfield
  • T. W. Leland
  • R. Kobayashi
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 8)


A novel method for the determination of the volumetric behavior of gases which required the measurement of only temperature and pressure was introduced by Burnett in 1936[1]. Since it was conceived, the Burnett method has been applied above the ice point by many investigators[2,3,4] and in some instances at low temperatures[5,6]. Prior to the present investigation, the method had not been verified at cryogenic temperatures by direct comparison with the results obtained by other methods. This paper reports the volumetric behavior of the helium-nitrogen system from 0° to — 140°C as determined by the Burnett method.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. S. Burnett, J. Appl. Mech., Trans. ASME, Vol. 58, A136 (1936).Google Scholar
  2. 2.
    G. M. Kramer and J. G. Miller, J. Phys. Chem., Vol. 61, 785 (1957).CrossRefGoogle Scholar
  3. 3.
    W. G. Schneider and J. A. H. Duffie, J. Chem. Phys., Vol. 17, 751 (1949).CrossRefGoogle Scholar
  4. 4.
    I. H. Silberberg, J. J. McKetta, and K. A. Kobe, J.Chem. Eng. Data, Vol. 4, 314, 323 (1959).CrossRefGoogle Scholar
  5. 5.
    D. Cook, Can. J. Chem., Vol. 35, 268 (1957).CrossRefGoogle Scholar
  6. 6.
    W. H. Mueller, T. W. Leland, Jr., and R. Kobayashi, A.I.Ch. E. Jour., Vol. 7, 267 (1961).CrossRefGoogle Scholar
  7. 7.
    L. Holborn and J. Otto, Z. Phys., Vol. 33, 1 (1925).CrossRefGoogle Scholar
  8. 8.
    W. H. Keesom, Helium, Elsevier Press, Amsterdam (1942).Google Scholar
  9. 9.
    J. W. M. DuMond and E. R. Cohen, Phys. Rev. Vol. 82, 555 (1951).CrossRefGoogle Scholar
  10. 10.
    E. H. Amagat, Ann. Chim. Phys., Vol. 6, 29, 68 (1893).Google Scholar
  11. 11.
    A. Michels, R. J. Lunbeck, and G. J. Wolkers, Physica, Vol. 17, 801 (1951).CrossRefGoogle Scholar
  12. 12.
    E. P. Bartlett, J. Am. Chem. Soc., Vol. 49, 687 (1927).CrossRefGoogle Scholar
  13. 13.
    A. S. Friedman, Ph.D Dissertation, Ohio State University (1951).Google Scholar
  14. 14.
    H. K. Onnes and A.T. van Urk, Cotrim. Phys. Lab. Univ. Leiden, No. 169D (1924).Google Scholar
  15. 15.
    W. H. Mueller, Ph.D. Thesis, Rice Institute (1959).Google Scholar
  16. 16.
    H. W. Woolley, NACA Tech. Note 3271 (1956), p. 9.Google Scholar
  17. 17.
    W. G. Schneider, Can. J. Res., Vol. 27B, 339 (1949).CrossRefGoogle Scholar
  18. 18.
    L. B. Smith and R. S. Taylor, J. Am. Chem. Soc., Vol. 45, 2107 (1923);CrossRefGoogle Scholar
  19. 18a.
    L. B. Smith and R. S. Taylor, J. Am. Chem. Soc., Vol. 48, 3122 (1926).CrossRefGoogle Scholar
  20. 19.
    T. T. H. Verschoyle, Proc. Roy. Soc. (London), Vol. A111, 552 (1926).CrossRefGoogle Scholar
  21. 20.
    D. White, Ohio State University Eng. Exp, Station News, Vol. 24, No. 3, 12 (1952).Google Scholar
  22. 21.
    D. White, T. Rubin, P. Camky, and H. L. Johnston, J. Phys. Chem., Vol. 64, 1607 (1960).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1963

Authors and Affiliations

  • F. B. Canfield
    • 1
  • T. W. Leland
    • 1
  • R. Kobayashi
    • 1
  1. 1.Rice UniversityHoustonUSA

Personalised recommendations