Advertisement

Boiling Heat Transfer from Cylinders in a Saturated Liquid Helium II Bath

  • R. M. Holdredge
  • P. W. McFadden
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 11)

Abstract

Helium, unlike any other substance, has two known liquid phases, The phase which occurs at higher temperatures (saturation temperatures from approximately 2,17° to 5.2°K) behaves in a similar manner to other liquids and is referred to as helium I. The low-temperature phase, helium II, has saturation temperatures below approximately 2.17°K. Helium. II has many properties which make it. unlike any other known fluid. These unusual properties have resulted in its being referred to at various times as “superfluid” and “quantum fluid.” In this paper the term superfluid is used to refer to He II, while other fluids including helium I are referred to as classical or ordinary fluids.

Keywords

Heat Flux Nusselt Number Test Section Bath Temperature Boiling Heat Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. L. Kapitza, J. Phys. (U.S.S.R.) 4:181 (1941).Google Scholar
  2. 2.
    L. J. Challis, Proceedings of the Seventh International Conference on Low Temperature Physics, University of Toronto Press, Toronto (1960), p. 476.Google Scholar
  3. 3.
    L. J. Challis, Proceedings of the Seventh International Conference on Low Temperature Physics, University of Toronto Press, Toronto (1960), p. 466.Google Scholar
  4. 4.
    K. Wey-Yen, Soviet Phys. JETP (English Transl.) 15:635 (1962).Google Scholar
  5. 5.
    R. C. Johnson and W. A. Little, Phys. Rev. 130:596 (1963).CrossRefGoogle Scholar
  6. 6.
    I. M. Khalatnikov, Zh. Eksperim. i Teor. Fiz. 22:687 (1952).Google Scholar
  7. 7.
    R. A. Madsen, Ph.D. Dissertation, Purdue University (1965).Google Scholar
  8. 8.
    L. Rinderer and P. Haenseler, Helv. Phys. Ada 32(4) :322 (1959).Google Scholar
  9. 9.
    T. H. K. Frederking, “Remarks on the Heat Transport in Helium II at High Flux Values,” Report No. 62–5, University of California, Los Angeles (February 1962).Google Scholar
  10. 10.
    E. L. Andronikashvili and G. G. Mirskaia, Soviet Phys. JETP (English Transl.) 2(3) :406 (1956).Google Scholar
  11. 11.
    R. K. Irey, P. W. McFadden, and R. A. Madgen in: International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 361.Google Scholar
  12. 12.
    P. W. McFadden and R. M. Holdredge, “Heat Transfer to a Saturated Bath of Liquid Helium II,” delivered to meeting of Commission I, International Institute of Refrigeration, Heat Transfer Below 100°K, Grenoble, France (June 1965).Google Scholar
  13. 13.
    R. M. Holdredge, Ph.D. Dissertation, Purdue University (1965).Google Scholar
  14. 14.
    H. van Dijk, M. Durieux, J. R. Clement, and J. K. Logan, “The 1958 He4 Scale of Temperatures,” NBS Monograph 10 (June 17, 1960).Google Scholar
  15. 15.
    R. T. Swim in: Advances in Cryogenic Engineering, Vol. 5, Plenum Press, New York (1960), p. 498.Google Scholar
  16. 16.
    L. A. Bromley, Chem. Eng. Progr. 46:221 (1960).Google Scholar
  17. 17.
    B. P. Breen and J. W. Westwater, Chem. Eng. Progr. 58(7) :67 (1962).Google Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • R. M. Holdredge
    • 1
  • P. W. McFadden
    • 1
  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations