Advertisement

Parity Violation in Nuclei

  • R. G. H. Robertson
Part of the Ettore Majorana International Science Series book series (EMISS, volume 12)

Abstract

Nuclear parity violation1 provides a window on a part of the hadronic weak interaction which is otherwise invisible. The idea of a universal weak current which acts in hadrons as well as leptons is of course central to all modern theories of the electroweak force but it is one which does not readily admit testing. We have some experimental knowledge of ΔS=1 and ΔC=1 non-1eptonic weak processes, and there is little cause for satisfaction in our understanding of those processes. The only immediate prospect for probing the ΔS=0 interaction is nuclear parity violation, and in the early days it was hoped that much of a fundamental nature might be learned. This optimism soon yielded to gloom when the cluttered nature of the nuclear workshop became apparent. Now, following substantial efforts both by theorists and experimentalists there is a renewed, more conservative optimism that nuclear parity violation (PV) can be understood at a level which tests our ability to calculate hadronic interactions, although it is not likely to influence the development of the underlying theories of the weak interaction.

Keywords

Circular Polarization Neutral Current Parity Violation Total Capture Cross Section Neutron Spin Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Tadic, Rep. Prog. Phys. 43: 67 (1980).CrossRefGoogle Scholar
  2. 2.
    J.M. Potter, J.D. Bowman, C.F. Hwang, J.L. McKibben, R.E. Mischke, D.E. Nagle, P.B. Debrunner, H. Frauenfelder, and L.B. Sorensen, Phys. Rev. Lett. 33: 1307 (1974); D.E. Nagle, J.B. Bowman, C. Hoffman, J. McKibben, R. Mischke, J.M. Potter, H. Frauenfelder, and L. Sorensen, in “High Energy Physics with Polarized Beams and Polarized Targets” ed. G.H. Thomas, Am. Inst. Phys. New York (1978).CrossRefGoogle Scholar
  3. 3.
    R. Balzer, R. Henneck, Ch. Jacquemart, J. Lang, M. Simonius, W. Haeberli, Ch. Weddigen, W. Reichart, and S. Jaccard, Phys. Rev. Lett. 44: 699 (1980); M. Simonius, in “Fifth Int. Conf. on Polarization Phenomena” Santa Fe (1980).CrossRefGoogle Scholar
  4. 4.
    N. Lockyer, T.A. Romanowski, J.D. Bowman, C.M. Hoffman, R.E. Mischke, D.E. Nagle, J.M. Potter, R.L. Talaga, E.C. Swallow, D. Alde, and D.R. Moffett, Bull. Am. Phys. Soc. 25: 525 (1980).Google Scholar
  5. 5.
    C.M. Hoffman, private communication.Google Scholar
  6. 6.
    E.M. Henley and F.R. Krejs, Phys. Rev. D 11: 605 (1975).CrossRefGoogle Scholar
  7. 7.
    V.R. Brown, E.M. Henley and F.R. Krejs, Phys. Rev. C 9: 935 (1974).CrossRefGoogle Scholar
  8. 8.
    M. Simonius, Phys. Lett. 41B: 415 (1972)Google Scholar
  9. M. Simonius, Nucl. Phys. A220: 269 (1974).Google Scholar
  10. 9.
    G. Barton, Nuovo Cim. 19: 512 (1961).CrossRefGoogle Scholar
  11. 10.
    G.S. Danilov, Phys. Lett. 18: 40 (1965).CrossRefGoogle Scholar
  12. 11.
    V.M. Lobashov, D.M. Kaminker, G.I. Kharkevich, V.A. Kniazkov, N.A. Lozovoy, V.A. Nazarenko, L.F. Sayenko, L.M. Smotritsky, and A.I. Yegorov, Nucl. Phys. A197: 241 (1972).Google Scholar
  13. 12.
    B.H.J. McKellar in “Int. Conf. on Frontiers of Physics”, Singapore (1978).Google Scholar
  14. 13.
    A.B. McDonald, E.D. Earle and J.W. Knowles, contrib. to this conference.Google Scholar
  15. 14.
    H.C. Lee, Phys. Rev. Lett. 41: 843 (1978).CrossRefGoogle Scholar
  16. 15.
    C.Y. Prescott, et al., Phys. Lett. B77: 347 (1978).Google Scholar
  17. 16.
    T.J. Bowles, private communication.Google Scholar
  18. 17.
    M. Gari in “Interaction Studies in Nuclei” ed. H. Jochim and B. Ziegler, North Holland, Amsterdam (1975).Google Scholar
  19. 18.
    K.R. Lassey and B.H.J. McKellar, Nucl. Phys. A260: 413 (1976).Google Scholar
  20. 19.
    J.F. Cavaignac, B. Vignon and R. Wilson, Phys. Lett. 67B: 148 (1977).Google Scholar
  21. 20.
    B. Vignon, private communication.Google Scholar
  22. 21.
    E. Bellotti, E. Fiorini, P. Negri, A. Pullia, L. Zanotti, and I. Filosofo, Nuovo Cim. 29A: 106 (1975).CrossRefGoogle Scholar
  23. 22.
    R.G.H. Robertson, R.A. Warner, P. Dyer, R.C. Melin, T.J. Bowles, A.B. McDonald, W.G. Davies, G.C. Ball and E.D. Earle, Progress Report, Michigan State University (1980) (unpublished).Google Scholar
  24. 23.
    F.C. Michel, Phys. Rev. 133: B329 (1964).CrossRefGoogle Scholar
  25. 24.
    R.G.H. Robertson and D.O. Riska, unpublished.Google Scholar
  26. 25.
    J.D. Vergados, Nucl. Phys. A220: 259 (1974).Google Scholar
  27. 26.
    P.G. Bizzetti and A. Perego, Phys. Lett. 64B: 298 (1976).Google Scholar
  28. 27.
    C.A. Gagliardi, A.R. Davis, G.T. Garvey, R.D. McKeown, B. Myslek-Laurikainen, R.G.H. Robertson, S.J. Freedman, and T.J. Bowles, contrib. to “Fifth Int. Conf. on Polarization Phenomena” Santa Fe (1980).Google Scholar
  29. 28.
    W. Teeters and D. Kurath (unpublished).Google Scholar
  30. 29.
    C.A. Barnes, M.M. Lowry, J.M. Davidson, R.E. Marrs, F.B. Morinigo, B. Chang, E.G. Adelberger and H.E. Swanson, Phys. Rev. Lett. 40: 840 (1978).CrossRefGoogle Scholar
  31. 30.
    H. Waffler, private communication.Google Scholar
  32. 31.
    P.R. Maurenzig, M. Bini, P.G. Bizzetti, T.F. Fazzini, A. Perego, G. Poggi, P. Sona and N. Taccetti, in “Neutrinos 79”, Bergen, p. 179 (1979); also P.R. Maurenzig, private communication.Google Scholar
  33. 32.
    B. Desplanques and J. Missimer, Nucl. Phys. A300: 286 (1978).Google Scholar
  34. 33.
    B. Desplanques, J.F. Donoghue and B.R. Holstein, Ann. Phys. 124: 449 (1980).CrossRefGoogle Scholar
  35. 34.
    W.C. Haxton, B.F. Gibson and E.M. Henley, to be published.Google Scholar
  36. 35.
    E.G. Adelberger, H.E. Swanson, M.D. Cooper, J.W. Tape, and T.A. Trainor, Phys. Rev. Lett. 34: 402 (1975); also E.G. Adelberger, private communication.CrossRefGoogle Scholar
  37. 36.
    K.A. Snover, R. Von Lintig, E.G. Adelberger, H.E. Swanson, T.A. Trainor, A.B. McDonald, E.D. Earle, and C.A. Barnes, Phys. Rev. Lett. 41: 145 (1978); also A.B. McDonald, private communication.CrossRefGoogle Scholar
  38. 37.
    M. Forte, B. Heckel, N. Ramsey, K. Green, G. Greene, M. Pendlebury, W. Sumner, P.D. Miller and W. Dress, Bull. Am. Phys. Soc. 25: 526 (1980).Google Scholar
  39. 38.
    See V.V. Flambaum and O.P. Sushkov, Phys. Lett. B (to be published).Google Scholar
  40. 39.
    K. Neubeck, H. Schober, and H. Waffler, Phys. Rev. C10: 320 (1974).Google Scholar
  41. 40.
    E. Bellotti, E. Fiorini, C. Liquori, P. Negri, and L. Zanotti, in “Neutrinos-79” Bergen, p. 175 (1980).Google Scholar
  42. 41.
    L.K. Fifield, private communication.Google Scholar
  43. 42.
    N. Krimmelbein, H. Schober and H. Waffler, in “Int. Conf. on Nuclear Structure and Spectroscopy” Amsterdam, Vol. 1 p. 149 (1974).Google Scholar
  44. 43.
    Y.G. Abov and P.A. Krupchiskii, Sov. Phys. Usp. 19: 75 (1976).CrossRefGoogle Scholar
  45. 44.
    B.A. Brown, W.A. Richter and N.S. Godwin, to be published.Google Scholar
  46. 45.
    There is now some confusion over the sign of the 18F result from Mainz. A sign change would allow a somewhat larger n. c. enhancement.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. G. H. Robertson
    • 1
    • 2
  1. 1.Cyclotron LaboratoryMichigan State UniversityEast LansingUSA
  2. 2.Physics DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations