Cooldown Transients in Cryogenic Transfer Lines

  • W. G. Steward
  • R. V. Smith
  • J. A. Brennan
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 15)


A cryogenic liquid, after being introduced into a warm transfer line or apparatus, expands to many times its original volume. In some systems the liquid and vapor flow smoothly, while in others significant flow and pressure oscillations develop. Additional factors which often are not negligible in cooldown of an apparatus are the quantity of liquid evaporated and the time required before a stable flow is reached.


Transfer Line Volume Flow Rate Inlet Valve Inlet Flow Rate Cryogenic Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. G. Steward, in: Advances in Cryogenic Engineering, Vol. 10, Plenum Press, New York (1965), p. 313.CrossRefGoogle Scholar
  2. 2.
    J. E. Burke, W. R. Byrnes, A. H. Post, and F. E. Ruccia, In: Advances in Cryogenic Engineering, Vol. 4, Plenum Press, New York (1960), p. 378.Google Scholar
  3. 3.
    R. B. Jacobs, in: Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 529.Google Scholar
  4. 4.
    S. Jarvis, NBS Tech. Note No. 301 (1965).Google Scholar
  5. 5.
    M. M. Koshar and J. Hoeraing, “Analysis of the Rapid Cooldown of a Liquid Oxygen Loading System,” (Internal report of the Martin Company, Denver, Colo.) (1960).Google Scholar
  6. 6.
    D. H. Liebenberg, J. K. Novak, and F. J. Edeskuty, “Cooldown of Cryogenic Transfer Systems,” AIAA Third Propulsion Joint Specialist Conference No. 67–475, Washington, D.C. (1967).Google Scholar
  7. 7.
    Lockheed Missiles and Space Company, “A Study of Cryogenic Container Thermodynamics During Propellant Transfer,” Final Report K-14-67-3 Contract NAS 8-20362 for Marshall Space Flight Center, Huntsville, Ala. (1967).Google Scholar
  8. 8.
    W. G. Steward, Ph.D. Dissertation, Colorado State University, Fort Collins, Colo. (1968).Google Scholar
  9. 9.
    W. G. Steward, R. V. Smith, and J. A. Brennan in: Developments in Mechanics, Vol. 4, J. E. Cermak and J. R. Goodman (eds.), Johnson Publishing Co., (1967), p. 1513.Google Scholar
  10. 10.
    L. F. Moody, ASME Trans., 66:671 (1944).Google Scholar
  11. 11.
    R. C. Martinelli and D. B. Nelson, ASME Trans., 70:695 (1948).Google Scholar
  12. 12.
    J. D. Rogers, AICHE J., 14(6):895 (1968).CrossRefGoogle Scholar
  13. 13.
    J. D. Rogers, G. Tietjen, AICHE J., 15(1): 144 (1969).CrossRefGoogle Scholar
  14. 14.
    E. N. Sieder and G. E. Tate, Ind. Eng. Chem., 28:1429 (1936).CrossRefGoogle Scholar
  15. 15.
    S. S. Kutateladze, “Heat Transfer in Condensation and Boiling,” State Sci. and Tech. Publ. of Lit. on Machinery, Moscow (Atomic Energy Commission Translation 3770, Tech. Info. Service, Oak Ridge, Tenn.)(1952).Google Scholar
  16. 16.
    W. R. Gambill, Chem. Eng. Progr. Symp. Ser. 59(41): 71 (1963).Google Scholar
  17. 17.
    B. P. Breen and J. W. Westwater, Chem. Eng. Progr., 58(7): 67 (1962).Google Scholar
  18. 18.
    N. Zuber, “Analysis of Thermally Induced Oscillations in the Near-Critical and Supercritical Thermodynamic Region,” Final Rept. Contract NAS 8-11422, Marshall Space Flight Center, Huntsville, Ala. (1966).Google Scholar
  19. 19.
    J. C. Friedly, J. L. Manganaro, and F. G. Kroeger, “Stability Investigation of Thermally Induced Flow Oscillations in Cryogenic Heat Exchangers,” General Electric Co. Rept. No. NASA CR61745, S-68–1023 (1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • W. G. Steward
    • 1
  • R. V. Smith
    • 1
  • J. A. Brennan
    • 1
  1. 1.NBS Institute for Basic StandardsBoulderUSA

Personalised recommendations