Cooldown Flow Rate Limits Imposed by Thermal Stresses in Liquid Hydrogen or Nitrogen Pipelines

  • J. K. Novak
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 15)


Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this cooldown flow rate is too high or too low, undesirable stresses will be produced. Lower flow rate limits based on avoidance of stratified two-phase flow have already been developed [1]. A previous study [2] developed a relationship between cooldown flow rate and thermal stress in AISI 304 stainless steel flanges cooled with liquid hydrogen, thus permitting the selection of upper liquid hydrogen flow rate limits to keep the thermal stresses in safe bounds in these flanges. The purpose of the present study is to extend the previous calculations to the cooldown of AISI 304 steel and 6061 aluminum flanges by liquid hydrogen or liquid nitrogen.


Thermal Stress Liquid Hydrogen Radial Temperature Gradient Pressure Piping Maximum Thermal Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Liebenberg, I K. Novak, and F. J. Edeskuty, “Cooldown of Cryogenic Transfer Systems,” No. 67–475, AIAA 3rd Propulsion Joint Specialist Conference, Washington, D.C. (1967).Google Scholar
  2. 2.
    J. K. Novak, in: Proceedings of the Second International Cryogenic Engineering Conference, Brighton, England, Iliffe Science and Technology Publications, Ltd., Guildford, Surrey, England (1968), p. 77.Google Scholar
  3. 3.
    Tube-Turns Welding Fittings and Flange Catalog No, 311, Tube-Turns Division of Chemetron Corp., 224 East Broadway, Louisville, Ky. (1962).Google Scholar
  4. 4.
    R. F. Thomas, “RATH Thermal Analysis Programs,” Report No. LA-3264-MS, Los Alamos Scientific Laboratory (1965).Google Scholar
  5. 5.
    E. L. Wilson, AIAA J., 3(12):2269 (1965).CrossRefGoogle Scholar
  6. 6.
    G. M. Dusinberre, Heat Transfer Calculations by Finite Differences, International Textbook Co., Scranton, Pa. (1961).Google Scholar
  7. 7.
    S. Timoshenko and J. Goodier, Theory of Elasticity, 2nd Ed., McGraw-Hill Book Co., New York (1951).Google Scholar
  8. 8.
    American Standard Code For Pressure Piping, ASA B31.1–4955, Sect. 6, par. 622, ASME, New York (1955).Google Scholar
  9. 9.
    M. F. Taylor, “Correlation of Local Heat-Transfer Coefficients for Single-Phase Turbulent Flow of Hydrogen in Tubes with Temperature Ratios to 23,” NASA-TN-D-4332, Lewis Research Center, Cleveland, Ohio (1968).Google Scholar
  10. 10.
    J. C. Bronson, F. J. Edeskuty, J. H. Fretwell, E. F. Hammel, W. E. Keller, K. L. Meier, A. F. Schuch, and W. L. Willis, in: Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1962), p. 198.Google Scholar
  11. 11.
    W. G. Fleider, J. C. Loria, and W. J. Smith, J. Appl. Mech., Tram. ASME, 28(9):409 (1961).CrossRefGoogle Scholar
  12. 12.
    J. C. Commander and M. H. Schwartz, “Cooldown of Large-Diameter Liquid Hydrogen and Liquid Oxygen Lines,” NASA-CR-54809, Aerojet General Corp., Sacramento, California (1966).Google Scholar
  13. 13.
    Cryogenic Materials Data Handbook, PB-171809, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio (1964).Google Scholar
  14. 14.
    R. M. McClintock and H. P. Gibbons, NBS Monograph 13 (1960).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • J. K. Novak
    • 1
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations