Peak Heat Flux Density of Superfluid He II in Insulated Vertical Channels with Closed Ends and Wells

  • R. C. Chapman
  • Y. W. Chang
  • T. H. K. Frederking
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 15)


In some situations, cooling by superfluid liquid helium (He II) may be advantageous for ac operation of superconducting solenoids [1] and during dissipative processes associated with flux motion [2]. The surface of the dissipative device can be kept cool by direct thermal contact with the liquid He II up to a critical thermal load (peak heat flux). Subsequently, film boiling sets in. Theoretical predictions of the peak heat flux for liquid He I (and other ordinary liquids) break down as soon as the temperature drops below the λ point (T λ = 2.172°K). This behavior is caused by He II superfluidity, as pointed out by Sydoriak and Roberts [3] on the basis of open-channel studies. The ideal-evaporator model proposed by these investigators [4] predicts a monotonic decrease of the peak flux as T is lowered towards absolute zero. In contrast, the experimental data show a maximum at about 1.9°K and may be up to one order of magnitude larger than the values predicted by the evaporator model [5]


Liquid Helium Vertical Channel Normal Fluid Peak Heat Peak Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Sychev, V. B. Zenkevich, V. V. Andrianov, and V. A. Altov, Sov. Phys. Doklady, 9:987 (1967).Google Scholar
  2. 2.
    W. B. Sampson, M. Strongin, A. Paskin, and G. M. Thompson, AppL Phys. Letters, 8:191 (1966).CrossRefGoogle Scholar
  3. 3.
    S. G. Svdoriak and T. R. Roberts, in: Liquid Helium Technology, Persamon Press, London (1966), p. 115.Google Scholar
  4. 4.
    S. G. Sydoriak and T. R. Roberts, J. Appl Phys., 28: 143 (1957).CrossRefGoogle Scholar
  5. 5.
    T. H. K. Frederking, Chem. Eng. Progr. Symp. Ser., 64(87): 21 (1968).Google Scholar
  6. 6.
    L. P. Kadanoff, W. Gotze, D. Hamblen, R. Hecht, E. A. S. Lewis, V. V. Palciauskas, M. Rayl, and J. Swift, Rev. Mod. Phys., 39:395 (1967).CrossRefGoogle Scholar
  7. 7.
    K. R. Atkins, Liquid Helium, Cambridge Univ. Press (1959).Google Scholar
  8. 8.
    R. J. Donnelly, Experimental Superfluidity, Univ. Chicago Press, Chicago (1967).Google Scholar
  9. 9.
    J. Wilks, The Properties of Liquid and Solid Helium, Oxford, Clarendon, England (1967).Google Scholar
  10. 10.
    F. London, Superfluids, Vol II, John Wiley and Sons, New York (1954).Google Scholar
  11. 11.
    S. M. Bhagat and B. M. Winer, Phys. Letters, 21A: 537 (1968).Google Scholar
  12. 12.
    J. R. Clow and J. D. Reppy, Phys. Rev. Letters, 19: 291 (1967).CrossRefGoogle Scholar
  13. 13.
    J. R. Clow and J. D. Reppy, Phys. Rev. Letters, 16: 887 (1966).CrossRefGoogle Scholar
  14. 14.
    D. F. Brewer and K. Mendelssohn, Proc. Roy. Soc, A260 (1961).Google Scholar
  15. 15.
    G. Ahlers, Bull. Am. Phys. Soc, Ser. II 14(3):417 (1967).Google Scholar
  16. 16.
    P. L. Kapitza, J. Phys. USSR, 5:59 (1941).Google Scholar
  17. 17.
    E. L. Andronikashvili, in: Supplement to “Helium”, (transi.), Consultants Bureau, Inc., New York (1959) p. 84.Google Scholar
  18. 18.
    C. J. Gorter and J. H. Meilink, Physica, 15:285 (1949).CrossRefGoogle Scholar
  19. 19.
    F. Beenakker, in: Low Temperature Physics, Gordon and Breach, New York (1962), p. 261.Google Scholar
  20. 20.
    F. A. Staas, K. W. Taconis, and W. M. Van Alphen, Physica, 27:893 (1961).CrossRefGoogle Scholar
  21. 21.
    J. T. Tough, W. D. McCormick, and J. G. Dash, Phys. Rev., 140: A1524 (1965).CrossRefGoogle Scholar
  22. 22.
    H. Schlichting, Boundary Layer Theory, 4th Ed., McGraw-Hill Book Co., New York (1960).Google Scholar
  23. 23.
    C. E. Chase, Phys. Rev., 127: 361 (1962).CrossRefGoogle Scholar
  24. 24.
    B. W. Clement and T. H. K. Frederking. in: Liquid Helium Technology; Pergamon Press, London (1966).Google Scholar
  25. 25.
    B. W. Clement, M.S. Thesis, Univ. California, Los Angeles, Calif. (1966).Google Scholar
  26. 26.
    U. D. Erben and F. Pobell, Phys. Letters, 26A:368 (1968).Google Scholar
  27. 27.
    G. Ahlers, Phys. Rev. Letters, 22:54 (1969).CrossRefGoogle Scholar
  28. 28.
    T. H. K. Frederking and R. J. Hesser, Phys. Letters, 25A: 666 (1967).Google Scholar
  29. 29.
    R. T. Parmley, B. Wong, and J. Skogh, in: Proc. Conf. Long Term Cryo-Propellant Storage in Space, Marshall Space Center, Huntsville, Ala. (1966), p. 253.Google Scholar
  30. 30.
    W. F. Giauque, T. H. Geballe, D. N. Lyon, and J. J. Fritz, Rev. Sci Instr., 23: 169 (1952).CrossRefGoogle Scholar
  31. 31.
    T. H. K. Frederking and C. Linnet, in: Advances in Cryogenic Engineering, Vol. 3, Plenum Press, New York (1968), p. 80.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • R. C. Chapman
    • 1
  • Y. W. Chang
    • 1
  • T. H. K. Frederking
    • 1
  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations