Transient Pool Boiling of Liquid Nitrogen Due to a Square-Wave Heat Flux

  • L. L. Giventer
  • J. L. SmithJr.
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 15)


The following study is based on pool boiling from a horizontal wire undergoing a periodic step in Joule heating (variable in amplitude and frequency) in saturated liquid nitrogen at atmospheric pressure. The principal area of investigation is the influence of heat-generation frequency upon the transient behavior of nucleate boiling, departure from nucleate boiling (DNB or “burnout”), and film boiling. The transient conditions are analyzed by determining the variation of the wire temperature with time for several power inputs over a frequency range of 0.1 to 1000 Hz. The results are compared with theoretical predictions and studies by other researchers.


Heat Flux Test Section Power Input Rayleigh Number Joule Heating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Seader, W. S. Miller, and L. A. Kalvinskas, “Boiling Heat Transfer for Cryogenics,” NASA CR-243 (June 1965).Google Scholar
  2. 2.
    E. G. Brentari, P. J. Giarrantano, and R. V. Smith, NBS Tech. Note 317 (1965).Google Scholar
  3. 3.
    L. Bewilogua, R. Knöner, and G. Wolf, Cryogenics, 6(1): 36 (1966).CrossRefGoogle Scholar
  4. 4.
    P. J. Marto, J. A. Moulson, and M. D. Maynard, J. Heat Transfer, Trans. ASME, 90(C-4):437 (1968).CrossRefGoogle Scholar
  5. 5.
    R. Cole, “Investigation of Transient Pool Boiling Due to a Sudden Power Surge,” NACA Tech. Note 3885 (1956).Google Scholar
  6. 6.
    E. A. McLean, V. E. Scherrer, and C. E. Faneuff, J. Appl. Phys., 27:193 (1956).CrossRefGoogle Scholar
  7. 7.
    D.-R. Pitts, H. H. Yen, and T. W. Jackson, J. Heat Transfer, Trans, ASME, 90:(C-4):476 (1968).CrossRefGoogle Scholar
  8. 8.
    M. W. Rosenthal and R. L. Miller, “An Experimental Study of Transient Boiling,” ORNL-2294, Oak Ridge National Laboratory (1957).Google Scholar
  9. 9.
    W. B. Hall and W. C. Harrison, in: Proc. 3rd International Heat Transfer Conference, (AIChE), C2, Science Press, Ephrata, Pa., (1966), p. 136.Google Scholar
  10. 10.
    W. R. Houchin and J. H. Lienhard, “Boiling Burnout in Low Thermal Capacity Heaters,” ASME paper 66-WA/HT-40 (Nov. 1966).Google Scholar
  11. 11.
    L. H. J. Wachters and E. van Andel, Chem. Eng. Sci., 21:937 (1966).CrossRefGoogle Scholar
  12. 12.
    H. Lurie and H. A. Johnson, J. Heat Transfer, Trans. ASME, 84C(3):217 (Aug. 1962).CrossRefGoogle Scholar
  13. 13.
    B. B. Mikic and W. M. Rohsenow, J. Heat Transfer, Trans. ASME, 91:245 (1969).CrossRefGoogle Scholar
  14. 14.
    C. Y. Han and P. Griffith, Inter. J. Heat and Mass Transfer, 8:905 (1965).CrossRefGoogle Scholar
  15. 15.
    H. J. Ivey, Inter. J. Heat and Mass Transfer, 10: 1023 (1967).CrossRefGoogle Scholar
  16. 16.
    D. W. Almgren and J. L. Smith, Jr., “The Inception of Nucleate Boiling with Liquid Nitrogen,” AFCRL-66–271 (Apr. 1966).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • L. L. Giventer
    • 1
  • J. L. SmithJr.
    • 2
  1. 1.Westinghouse Electric CorporationW. MifflinUSA
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations