Advertisement

Nucleate Boiling of Nitrogen, Argon, and Carbon Monoxide from Atmospheric to Near the Critical Pressure

  • C. Johler
  • E. L. ParkJr.
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 15)

Abstract

The nucleate-boiling region is of great importance to the engineer because in this region large quantities of heat can be removed with relatively low temperature differences. This study was initiated to study the boiling behavior of carbon monoxide and to compare carbon monoxide’s nucleate-boiling behavior to the boiling behavior of other cryogenic fluids (nitrogen and argon).

Keywords

Critical Heat Flux Boiling Heat Transfer Heat Transfer Surface Liquid Argon Maximum Temperature Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Johler, M. S. Thesis, University of Missouri, Rolla, Rolla, Mo. (1969).Google Scholar
  2. 2.
    M. Jakob, Heat Transfer, Vol. I, John Wiley and Sons, New York (1949).Google Scholar
  3. 3.
    S. G. Bankoff, AIChE J., 4:24 (1958).CrossRefGoogle Scholar
  4. 4.
    S. G. Bankoff, Chem. Eng. Progr. Symp. Ser., 55:87 (1959).Google Scholar
  5. 5.
    P. J. Griffith and J. D. Wallis, Chem. Eng. Progr, Symp. Ser., 56:49 (1960).Google Scholar
  6. 6.
    V. E. Denny, Ph.D. Dissertation, University of Minnesota, Minneapolis, Minn. (1961).Google Scholar
  7. 7.
    H. B. Clark, P. S. Strenge, and J. W. Westwater, Chem. Eng. Progr. Symp. Ser., 55:103 (1959).Google Scholar
  8. 8.
    Y. Heled and A. Orell, Int. J. Heat. Mass Transfer, 10:553 (1967).CrossRefGoogle Scholar
  9. 9.
    R. F. Gaertner and J. W. Westwater, Chem. Eng. Progr. Symp. Ser., 56:39 (1960).Google Scholar
  10. 10.
    C. Wei and G. W. Preckshot, Chem. Eng. Science, 19:838 (1964).CrossRefGoogle Scholar
  11. 10.
    C. Corty and A. S. Foust, Chem. Eng. Progr. Symp. Ser., 51:1 (1955).Google Scholar
  12. 12.
    H. M. Kurihara and J. E. Myers, AIChE J., 6:83 (1960).CrossRefGoogle Scholar
  13. 13.
    K. K. Nangia and W. Y. Chon, AIChE J., 13:872 (1967).CrossRefGoogle Scholar
  14. 14.
    W. M. Rohsenow and P. Griffith, Chem. Eng. Progr. Symp. Ser., 52:47 (1956).Google Scholar
  15. 15.
    S. S. Kutateladze, Izv. Akad. Nauk SSSR OTD Tekh. Nauk, 2(4): 342 (1951).Google Scholar
  16. 16.
    N. Zuber, Trans. ASME, 80:711 (1958).Google Scholar
  17. 17.
    M. T. Cichelli and C. F. Bonilla, Trans. AIChE, 41:755 (1945).Google Scholar
  18. 18.
    J. H. Lienhard and V. E. Schrock, J. Heat Transfer, 85:261 (1963).CrossRefGoogle Scholar
  19. 19.
    C. B. Cobb and E. L. Park, Chem. Eng. Progr. Svmp. Ser., 65:188 (1969).Google Scholar
  20. 20.
    S. I. Tang and Z. Rotem, Can. J. Chem. Eng., 43:355 (1965).CrossRefGoogle Scholar
  21. 21.
    C. J. Rallis and H. H. Jawurek, Int. J. Heat Mass Transfer, 7:1051 (1964).CrossRefGoogle Scholar
  22. 22.
    S. J. Van Stralen, Br. Chem. Eng., 6:834 (1961).Google Scholar
  23. 23.
    N. Zuber, Appl. Meck Rev., 17:655 (1965).Google Scholar
  24. 24.
    A. Orell, Int. J. Mass Heat Transfer, 10:967 (1967).CrossRefGoogle Scholar
  25. 25.
    P. G. Kosky, Ph.D. Dissertation, University of California, Berkeley, Calif. (1965).Google Scholar
  26. 26.
    L. S. Sterman and Y. U. Vilemas, Int. J. Heat Mass Transfer, 11:347 (1968).CrossRefGoogle Scholar
  27. 27.
    D. N. Lyon, P. G. Kosky, and B. N. Harman, in: Advances in Cryogenic Engineering, Vol. 9, Plenum Press, New York (1963), p. 77.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • C. Johler
    • 1
  • E. L. ParkJr.
    • 1
  1. 1.University of Missouri at RollaRollaUSA

Personalised recommendations