Advertisement

Survey of Heat Transfer to Near-Critical Fluids

  • R. C. Hendricks
  • R. J. Simoneau
  • R. V. Smith
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 15)

Abstract

Transport processes, particularly heat transfer in the near-critical region have been of interest for about the last 15 years. Current emphasis stems from applications which require the use of a fluid in the near-critical condition, from inadequate information to produce satisfactory design expressions, and from an inadequate understanding of the mechanics which produce the peculiar behavior in the near-critical region.

Keywords

Heat Transfer System Oscillation Eddy Diffusivity Twisted Tape Stanton Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Hendricks, R. J. Simoneau, and R. V. Smith, forthcoming NASA TN, (NASA TMX-52612).Google Scholar
  2. 2.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, New York (1954).Google Scholar
  3. 3.
    J. S. Rowlinson, Liquids and Liquid Mixtures, Butterworths Scientific Publ. (1959).Google Scholar
  4. 4.
    E. F. Hammel, in: Pure and Applied Cryogenics, Vol. 5, Pergamon Press (1966), p. 11.Google Scholar
  5. 5.
    B. Widom, Science, 157(3787): 375 (1967).CrossRefGoogle Scholar
  6. 6.
    J. V. Sengers and A. Levelt Sengers, Chem. Eng. News, 46(25): 104 (1968).CrossRefGoogle Scholar
  7. 7.
    O. Maass, Chem. Rev., 23(1): 17 (1938).CrossRefGoogle Scholar
  8. 8.
    A. Michels, B. Blaisse, and C. Michels, Proc. Roy. Soc. (London), 160A(902):358 (1937).Google Scholar
  9. 9.
    R. D. Goodwin, D. E. Diller, H. M. Roder, and L. A. Weber, J. Res. NBS, A. Phys. and Chem., 67(2): 173 (1963).Google Scholar
  10. 10.
    E. F. Obert, Concepts of Thermodynamics, McGraw-Hill Book Co., New York (1960).Google Scholar
  11. 10.
    U.M. Benedict, G. B. Webb, and L. C. Rubin, J. Chem. Phys., 8(4): 334 (1940).CrossRefGoogle Scholar
  12. 12.
    T. R. Strobridge, NBS Tech. Note 129 (Jan. 1962).Google Scholar
  13. 13.
    H. M. Roder and R. D. Goodwin, NBS Tech. Note 130 (Dec. 1961).Google Scholar
  14. 14.
    D. P. Harry, III: NASA TN D-1664 (1963).Google Scholar
  15. 15.
    F. N. Goldberg and A. M. Haferd, NASA TN D-4341 (1968).Google Scholar
  16. 16.
    R. B. Griffiths, J. Chem. Phys., 43(6): 1958 (1965).CrossRefGoogle Scholar
  17. 17.
    R. B. Griffiths, Phys. Rev., 158(1): 176 (1967).CrossRefGoogle Scholar
  18. 18.
    M. S. Green, M. Vicentini-Missoni, and J. M. H. Levelt Sengers, Phys. Rev. Letters, 18(25): 1113 (1967).CrossRefGoogle Scholar
  19. 19.
    J. M. H. Levelt Sengers and M. Vicentini-Missoni, in: Proceedings of the Fourth Symposium on Thermophysicai Properties, ASME, New York (1968), p. 79.Google Scholar
  20. 20.
    M. Vicentini-Missoni, J. M. H. Levelt Sengers, and M. S. Green, Phys. Rev. Letters, 22(9): 389 (1969).CrossRefGoogle Scholar
  21. 21.
    J. V. Sengers, Ph.D. Dissertation, Univ. of Amsterdam, The Netherlands (1962).Google Scholar
  22. 22.
    L. A. Guildner, J. Res. NBS, A. Phys. and Chem., 66(4): 341 (1962).Google Scholar
  23. 23.
    D. E. Diller and H. M. Roder, in: Advances in Cryogenic Engineering, Vol. 15, Plenum Press, New-York (1970), p. 58.Google Scholar
  24. 24.
    V. P. Sokolova and I. F. Golubev, Thermal Eng., 14(4): 123 (1967).Google Scholar
  25. 25.
    I. F. Golubev and V. P. Sokolova, Thermal Eng., 11(9):78 (1964).Google Scholar
  26. 26.
    H. Ziebland and J. T. A. Burton, Brit. J. Appl. Phys., 9(2): 52 (1958).CrossRefGoogle Scholar
  27. 27.
    J. Kestin. J. H. Whitelaw, and T. F. Zien, Phvsica, 30(1): 161 (1964).CrossRefGoogle Scholar
  28. 28.
    D. E. Diller, J. Chem. Phys., 42(6): 2089 (1964).CrossRefGoogle Scholar
  29. 29.
    H. J. M. Hanley and G. E. Childs, Cryogenics, 9(2): 106 (1969).CrossRefGoogle Scholar
  30. 30.
    L. I. Stiel and G. Thodos, in: Progress in International Research on Thermodynamic and Transport Properties, ASME, New York (1962), p. 352.Google Scholar
  31. 31.
    J. V. Sengers, in: Recent Advances in Engineering Science, Vol. 3, Gordon and Breach Science Publ., New York (1969), p. 153.Google Scholar
  32. 32.
    R. S. Brokaw, “Statistical Mechanical Theories of Transport Properties,” paper presented at the International Conference on Properties of Steam, Tokyo, Japan, Sept. 9–13, 1968.Google Scholar
  33. 33.
    V. J. Johnson, ed., A Compendium of the Properties of Materials at Low Temperature,. Phase I, NBS, Boulder, Colorado (1959).Google Scholar
  34. 34.
    R. Zwickler, Energies, 20(7/8): 223 (1968).Google Scholar
  35. 35.
    G. O. Jones and P. A. Walker, Proc. Phys. Soc., 69B(12): 1348 (1956).Google Scholar
  36. 36.
    H. M. Roder, L. A. Weber, and R. D. Goodwin, NBS Monograph 94 (Aug. 10, 1965).Google Scholar
  37. 37.
    H. W. Woolley, R. B. Scott, and F. G. Brickwedde, J. Res. NBS, 41(5): 379 (1948).Google Scholar
  38. 38.
    K. A. Pew, R. C. Hendricks, and R. J. Simoneau, “Nitrogen Property Program,” proposed NASA Tech. Mem.Google Scholar
  39. 39.
    D. B. Mann, NBS Tech. Note 154 (Jan. 1962).Google Scholar
  40. 40.
    L. A. Weber, NBS Rept. 9710 (1968).Google Scholar
  41. 41.
    R. D. Goodwin, J. Res. NBS, A. Phys. and Chem.., 73A(1):25 (1969).Google Scholar
  42. 42.
    A. J. Vennix, Ph.D. Dissertation, Rice University, Houston, Tex. (1966).Google Scholar
  43. 43.
    R. S. Lyman, Paper 68-WA/PID-7, ASME (Dec 1968).Google Scholar
  44. 44.
    J. B. Maxwell, Data Book on Hydrocarbons, D. Van Nostrand Co., Princeton, N.J. (1950).Google Scholar
  45. 45.
    Anon.: 1967 ASME Steam Tables, “Thermodynamic and Transport Properties of Steam,” ASME, New York (1967).Google Scholar
  46. 46.
    F. G. Keyes, J. H. Keenan, P. G. Hill, and J. G. Moore, “A Fundamental Equation for Liquid and Vapor Water,” paper presented at the Seventh international Conference on the Properties of Steam, Tokyo, Japan, Sept. 9–13, 1968.Google Scholar
  47. 47.
    J. J. Martin, in: Thermodynamic Transport Properties Gases, Liquids, Solids, Purdue University, Lafayette, Ind. (1959), p. 110.Google Scholar
  48. 48.
    O. Jacolin, Rep. CEA-Bib-57, Commissariat a l’Energie Atomique, Saclay, France (Dec. 1965).Google Scholar
  49. 49.
    J. R. McCarthy and H. Wolf, Rep. RR 60–12 (NP-10572), Rocketdyne Div., North American Aviation, Inc. (Dec. 1960).Google Scholar
  50. 50.
    J. R. McCarthy and H. Wolf, ARS J., 30(4):423 (1960).CrossRefGoogle Scholar
  51. 51.
    M. F. Taylor, NASA TN D-4332 (1968).Google Scholar
  52. 52.
    M. F. Taylor, Int. J. Heat Mass Transfer, 10(8): 1123 (1967).CrossRefGoogle Scholar
  53. 53.
    W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill Book Co., New York (1954).Google Scholar
  54. 54.
    P. Perroud and J. Rebière, Rep. CEA-R-2499, Commissariat a l’Energie Atomique, Grenoble, France (Oct. 1964).Google Scholar
  55. 55.
    Y. Y. Hsu, G. R. Cowgill, and R. C. Hendricks, NASA TN D-4149 (1967).Google Scholar
  56. 56.
    P. J. Giarratano and R. V. Smith, in: Advances in Cryogenic Engineering, Vol. 11, Plenum Press, New York (1966), p. 492.CrossRefGoogle Scholar
  57. 57.
    R. C. Hendricks, R. W. Graham, Y. Y. Hsu, and R. Friedman, NASA TN D-765 (1961).Google Scholar
  58. 58.
    R. C. Hendricks, R. W. Graham, Y. Y. Hsu, and R. Friedman, NASA TN D-3095 (1966).Google Scholar
  59. 59.
    L. S. Tong, Boiling Heat Transfer and Two-Phase Flow, John Wiley and Sons, New York (1965).Google Scholar
  60. 60.
    E. Schmidt, E. R. G. Eckert, and U. Grigull, Trans. No. F-TS-527-RE, Air Material Command, Wright-Patterson AFB, Ohio (Apr. 26, 1946).Google Scholar
  61. 61.
    W. B. Powell, Jet Propulsion, 27(7): 776 (1957).CrossRefGoogle Scholar
  62. 62.
    R. C. Hendricks, R. W. Graham, Y. Y. Hsu, and A. A. Medeiros, ARS J., 32(2): 244 (1962).CrossRefGoogle Scholar
  63. 63.
    W. S. Miller, J. D. Seader, and D. M. Trebes, in: Bull. Inst. Intern. Froid, Annexe No. 2 (1965), p. 173.Google Scholar
  64. 64.
    M. E. Shitsman, High Temp., 1(2):237 (1963).Google Scholar
  65. 65.
    K. Yamagata, K. Nishikawa, S. Hasegawa, and T. Fujii, Japanese Society of Mechanical Engineers Semi-International Symposium Sept. 1967.Google Scholar
  66. 66.
    G. Domin, Brennstoff-Wärme-Kraft, 15(11):527 (1963).Google Scholar
  67. 67.
    L. B. Koppel and J. M. Smith, in: International Developments in Heat Transfer, ASME, New York (1963), p. 585.Google Scholar
  68. 68.
    B. S. Petukhov, E. A. Krasnoschekov, and V. S. Protopopov, in: International Development in Heat Transfer, ASME, New York (1963), p. 569.Google Scholar
  69. 69.
    H. S. Swenson, J. R. Carver, and C. R. Kakarala, J. Heat Transfer, 87(4): 477 (1965).CrossRefGoogle Scholar
  70. 70.
    R. W. Graham, R. C. Hendricks, and R. C. Ehlers, NASA TN D-1883 (1964).Google Scholar
  71. 71.
    V. E. Holt and R. J. Grosh, Nucleonics, 21(8): 122 (1963).Google Scholar
  72. 72.
    N. L. Dickinson and C. P. Welch, Trans. ASME, 80(3): 746 (1958).Google Scholar
  73. 73.
    H. Tanaka, N. Nishiwaki, and M. Hirata, Turbulent Heat-Transfer to Supercritical Carbon Dioxide. Japanese Society of Mechanical Engineers Semi-International Symposium, Tokyo, Japan, Sept. 1967.Google Scholar
  74. 74.
    R. D. Wood, Ph.D. Dissertation, Northwestern University, Evanston, Ill. (1963).Google Scholar
  75. 75.
    K. R. Schmidt, AEC-tr-4033 (1959).Google Scholar
  76. 76.
    W. R. Thompson and E. L. Geery, in: Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1962), p. 391.Google Scholar
  77. 77.
    Y. Y. Hsu, in: International Developments in Heat Transfer, ASME, New York (1963), p. D-188.Google Scholar
  78. 78.
    E. G. Hauptmann, Ph.D. Dissertation, California institute of Technology, Pasadena, Calif. (1966).Google Scholar
  79. 79.
    M. A. Styrikovich, M. E. Shitsman, and Z. L. Miropolskii, Teploenergetika, 3:32 (1956).Google Scholar
  80. 80.
    M. A. Styrikovich, Z. L. Miropolskii, and M. E. Shitsman, Mitt. Ver. Grosskesselbesitzer, 61:288 (1959).Google Scholar
  81. 81.
    S. A. Kahn, Ph.D. Dissertation, University of Manchester, England (1965).Google Scholar
  82. 82.
    B. S. Shiralkar and P. Griffith, Paper 68-HT-39, ASME (Aug. 1968).Google Scholar
  83. 83.
    J. R. McCarthy, D. M. Trebes, and J. D. Seader, Paper 67-HT-59, ASME (Aug. 1967).Google Scholar
  84. 84.
    W. S. Hines and H. Wolf, ARS J., 32(3): 361 (1962).CrossRefGoogle Scholar
  85. 85.
    Y. Y. Hsu, R. C. Hendricks, and R. W. Graham, in: International Developments in Heat Transfer, ASME, New York (1963), p. D-185.Google Scholar
  86. 86.
    K. Goldman, Rep. NDA-2–31, Nuclear Development Corp. of America (1956).Google Scholar
  87. 87.
    L. E. Dean and L. M. Thompson, Paper 65-SA-4, ASME (June 1956).Google Scholar
  88. 88.
    A. G. Monroe, H. A. S. Bristow, and J. E. Newell, J. Appl. Chem., 2(11):613 (1952).CrossRefGoogle Scholar
  89. 89.
    J. D. Griffith and R. H. Sabersky, ARS J., 30(3):289 (1960).Google Scholar
  90. 90.
    K. K. Knapp and R. H. Sabersky, Int. J. Heat Mass Transfer, 9(1):41 (1966).CrossRefGoogle Scholar
  91. 91.
    K. Nishikawa and K. Miyabe, Mem. Fac. Eng. Kyusa Univ., 25(1): 1 (1965).Google Scholar
  92. 92.
    M. Cumo, G. E. Farello, and G. Ferrari, ASME Paper 69-HT-30 presented at Eleventh National Heat Transfer Conference, Minneapolis, Minn., Aug. 3, 1969.Google Scholar
  93. 93.
    E. N. Dubrovina and Vj. P. Skripov, in: Proceedings of the Second All-Soviet Union Conference on Heat and Mass Transfer, Vol 1, California Univ. Press, Berkeley, Calif. (1966), p. 36.Google Scholar
  94. 94.
    R. J. Goldstein and W. Aung, Paper 67-WA/HT-2, ASME, New York (Nov. 1967).Google Scholar
  95. 95.
    U. Grigull and E. Abadzic, presented at the Symposium on Heat Transfer and Fluid Dynamics of Near-Critical Fluids, Inst. Mech. Eng., Bristol, England, Mar. 1968.Google Scholar
  96. 96.
    S. Hasegawa and K. Yoshioka, in: Proceedings of the Third International Heat Transfer Conference, Vol. 2, AIChE, New York (1966), p. 214.Google Scholar
  97. 97.
    J. D. Parker and T. E. Mullin, Symposium on Heat Transfer and Fluid Dynamics of Near-Critical Fluids, Inst. Mech. Eng., Bristol, England, Mar. 1968.Google Scholar
  98. 98.
    E. M. Sparrow and J. L. Gregg, Trans. ASME, 80(4): 879 (1958).Google Scholar
  99. 99.
    D. L. Doughty and R. M. Drake Jr., Trans. ASME, 78(8): 1843 (1956).Google Scholar
  100. 100.
    C. F. Bonilla and L. A. Sigel, Chem. Eng. Prog. Symp. Ser., 57(32): 87 (1961).Google Scholar
  101. 101.
    V. P. Skirpov and P. I. Potashev, NASA TT F-11333 (1967).Google Scholar
  102. 102.
    K. Brodowicz and J. Bialokoz, Archiwum Budowy Maszyn, 10(4): 289 (1963)..Google Scholar
  103. 103.
    C. A. Fritsch and R. J. Grosh, in: International Developments in Heat Transfer, ASME, New York (1963), p. 1010.Google Scholar
  104. 104.
    C. A. Fritsch and R. J. Grosh, J. Heat Transfer, 85(4): 289 (1963).CrossRefGoogle Scholar
  105. 105.
    J. R. Larson and R. J. Schoenhals, J. Heat Transfer, 88(4):407 (1966).CrossRefGoogle Scholar
  106. 106.
    H. A. Simon and E. R. G. Eckert, Int. J. Heat Mass Transfer, 6(8): 681 (1963).CrossRefGoogle Scholar
  107. 107.
    E. Schmidt, in: ASME General Discussion on Heat Transfer, ASME, New York (Sept. 11–13, 1951), p. 361.Google Scholar
  108. 108.
    E. Schmidt, Int. J. Heat Mass Transfer, 1(1):92 (1960).CrossRefGoogle Scholar
  109. 109.
    E. Schmidt, in: Proceedings of International Heat Transfer Conference, ASME, Boulder, Colo., Aug. 28-Sept. 1, 1961.Google Scholar
  110. 110.
    J. P. Holman and J. H. Boggs, J. Heat Transfer, 82(3):221 (1960).CrossRefGoogle Scholar
  111. 111.
    G. E. Tanger, J. H. Lytle, and R. I. Vachon, J. Heat Transfer, 90(i):37 (1968).CrossRefGoogle Scholar
  112. 112.
    D. G. Harden and J. H. Boggs, in: Proceedings of the 1964 Heat Transfer and Fluid Mechanics Institute, Stanford Univ. Press, Stanford, Calif. (1964), p. 38.Google Scholar
  113. 113.
    A. J. Cornelius and J. D. Parker, in: Proceedings of the 1965 Heat Transfer and Fluid Mechanics Institute, Stanford Univ. Press, Stanford, Calif. (1965), p. 317.Google Scholar
  114. 114.
    E. W. P. Hahne, Int. J. Heat Mass Transfer, 8(3):481 (1965).CrossRefGoogle Scholar
  115. 115.
    D. A. Van Putte and R. J. Grosh, Tech. Rep. No. 4, (ANL Subcontract 31–109–38–704), Purdue Univ., Lafayette, Ind. (1960).Google Scholar
  116. 116.
    A. I. Chalfant, “Heat Transfer and Fluid Friction Experiments with Supercritical Water,” presented at Reactor Heat-Transfer Conf. (Nov. 1956).Google Scholar
  117. 117.
    D. G. Randall, Reactor Heat-Transfer Conf. (Nov. 1956).Google Scholar
  118. 118.
    K. Goldmann, in: International Developments in Heat Transfer, ASME, New York (1963), p. 561.Google Scholar
  119. 119.
    R. P. Bringer and J. M. Smith, AIChE J., 3(1):49 (1957).CrossRefGoogle Scholar
  120. 120.
    Z. L. Miropolskii, V. J. Picus, and M. E. Shitsman, in: Proceedings of the Third International Heat Transfer Conference, Vol 2, AIChE, New York (1966), p. 95.Google Scholar
  121. 121.
    L. Miropolskii and M. E. Shitsman, Soviet Phys.-Tech. Phys., 2(10):2196 (1957).Google Scholar
  122. 122.
    S. G. Morra and J. P. Barger, Tech. Rept. 1, Massachusetts Inst. Tech., Cambridge, Mass. (June 1958). (Available from DDC as AD-203441.)Google Scholar
  123. 123.
    J. V. Delbene and J. P. Barger, Tech. Rept. 2, Massachusetts Inst. Tech., Cambridge, Mass. (1959).Google Scholar
  124. 124.
    E. J. Szetela, ARS J., 32(8): 1289 (1962).Google Scholar
  125. 125.
    E. A. Krasnoshchekov and V. S. Protopopov, High Temperature, 4(3): 375 (1966).Google Scholar
  126. 126.
    E. A. Krasnoshchekov, V. S. Protopopov, V. Fen, and I. V. Kuraeva, in: Proceedings of the Second All-Soviet Union Conference on Heat and Mass Transfer, Vol. I, California Univ. Press, Berkeley, Calif. (1966), p. 26.Google Scholar
  127. 127.
    D. Finn, Ph.D. Dissertation, University of Oklahoma, Norman, Oklahoma (1964).Google Scholar
  128. 128.
    J. P. Holman, S. N. Rea, and C. E. Howard, Int. J. Heat Mass Transfer, 8(8): 1095 (1965).CrossRefGoogle Scholar
  129. 129.
    R. C. Hendricks, R. J. Simoneau, and R. Friedman, NASA TN D-2977 (1965).Google Scholar
  130. 130.
    A. A. Bishop, F. J. Krambeck, and R. O. Sandberg, Paper 65-WA/HT-35, ASME, New York (Nov. 1965).Google Scholar
  131. 131.
    N. M. Schnurr, J. Heat Transfer, 91(1): 16 (1969).CrossRefGoogle Scholar
  132. 132.
    A. A. Armand, N. V. Tarasova, and A. S. Konkov, NASA TT F-11282 (1967).Google Scholar
  133. 133.
    M. E. Shitsman, Teploenergetika, 9(1):83 (1962). (Trans. by National Lending Library for Science and Tech., Yorkshire, England, No. RTS 2133.)Google Scholar
  134. 134.
    Ye. A. Krasnoshchekov and V. S. Protopopov, NASA TT F-11335 (1967).Google Scholar
  135. 135.
    M. R. Glickstein and R. H. Whitesides Jr., Paper 67-HT-7, ASME, New York (Aug. 1967).Google Scholar
  136. 136.
    J. C. Beech, Rep. ERDC-14/R/66; WAC/173/015, Explosives Research and Development Center, England (Feb. 1967).Google Scholar
  137. 137.
    J. C. Beech and H. Ziebland, “Heat Transfer to Kerosine at Supercritical and Subcritical Pressures,” Ministry of Technology Report, England, unpublished.Google Scholar
  138. 138.
    E. R. G. Eckert, Trans. ASME, 76(1): 83 (1954).Google Scholar
  139. 139.
    Z. L. Miropolskii and M. E. Shitsman, Energomashinostroenic, 4(1):8 (1958).Google Scholar
  140. 140.
    M. E. Shitsman, Teploenergetika, 6(1):68 (1959). (Trans, by Dept. of Scientific and Industrial Research, London, England, No. RTS 1229.)Google Scholar
  141. 141.
    W. E. Gunson and H. B. Kellogg, Paper 66-WA/HT-11, ASME, New York (Nov. 1966).Google Scholar
  142. 142.
    R. S. Brokaw, NACA RM E57K19a (1958).Google Scholar
  143. 143.
    H. L. Hess and H. R. Kunz, J. Heat Transfer, 87(1):41 (1965).CrossRefGoogle Scholar
  144. 144.
    R. C. Martinelli, L. M. K. Boelter, T. H. M. Taylor, E. G. Thomson, and E. H. Morrin, Trans. ASME, 66(2): 139 (1944).Google Scholar
  145. 145.
    L. S. Stermann, Zh. Tekhn. Fiz., 24(11): 2046 (1954). (Trans. No. RJ-421, Assoc. Tech. Services, 1955.)Google Scholar
  146. 146.
    K. Yamagata et al., Technology Rept. Kyushu Univ., 37(1):47 (1964).Google Scholar
  147. 147.
    M. Wilson, Ph.D. Dissertation, University of New Mexico (1969).Google Scholar
  148. 148.
    R. J. Hanold, “Turbulent Heat Transfer to Carbon Dioxide Near the Critical Point. Part I. A Parameter Study; Part If. The Body Force Effect,” paper submitted to the 1970 international Heat-Transfer Conference.Google Scholar
  149. 149.
    R. D. Wood and J. M. Smith, AIChE J., 10(2): 180 (1964).CrossRefGoogle Scholar
  150. 150.
    L. E. Gill, G. F. Hewitt, and P. M. C. Lacey, Rep. AERE-R-3955, United Kingdom Atomic Energy Authority, England (1963).Google Scholar
  151. 151.
    P. J. Bourke, D. J. Pulling, L. E. Gill, and W. H. Denton, paper presented at Symposium on Heat Transfer and Fluid Dynamics of Near Critical Fluids, Inst, Mech. Eng., Bristol, England, Mar. 1968.Google Scholar
  152. 152.
    W. B. Hall, J. D. Jackson, and S. A. Kahn, in: Proceedings of the Third International Heat-Transfer Conference, Vol 1, AIChE, New York (1966), p. 257.Google Scholar
  153. 153.
    R. H. Sabersky and E. G. Hauptmann, Int. J. Heat Mass Transfer, 10(11): 1499 (1967).CrossRefGoogle Scholar
  154. 154.
    W. S. Miller, private communication.Google Scholar
  155. 155.
    H. Itō, J. Basic Eng., 81(2): 123 (1959).Google Scholar
  156. 156.
    W. R. Dean, Phil. Mag., Ser. VII, 5(30): 674 (1928).Google Scholar
  157. 157.
    R. C. Hendricks and F. F. Simon, in: Multi-Phase Flow Symposium, ASME, New York (1963); p. 90.Google Scholar
  158. 158.
    Anon.: NASA CR-678 (1967).Google Scholar
  159. 159.
    J. R. McCarthy et al., Rep. 6529, Rocketdyne Div., North American Aviation (NASA CR-78634) (Sept. 15, 1966).Google Scholar
  160. 160.
    M. F. Taylor, J. Spacecraft Rockets, 5(11): 1353 (1968).CrossRefGoogle Scholar
  161. 161.
    J. R. Bartlit and K. D. Williamson Jr., in: Advances in Cryogenic Engineering, Vol. II, Plenum Press, New York (1966), p. 561.CrossRefGoogle Scholar
  162. 162.
    E. Michaud and C. P. Walsh, short communication at the seminar on Near-Critical Fluids, 1968 Cryogenic Engineering Conference, Case Western Reserve Univ., Cleveland, Ohio; also, J. W. Ackerman, “Pseudoboiling Heat Transfer to Supercritical Pressure Water in Smooth and Ribbed Tubes,” to be published in J. Heat Trans.Google Scholar
  163. 163.
    W. B. Hall J. D. Jackson, and A. Watson, paper presented at Symposium on Heat Transfer and Fluid Dynamics of Near-Critical Fluids, Inst. Mech. Eng., Bristol England, Mar. 1968.Google Scholar
  164. 164.
    W. B. Hall, Res. Rep. N.E. 1, Univ. of Manchester, England (Jan. 1968).Google Scholar
  165. 165.
    J. D. Jackson and K. Evans-Lutterodt, Res. Rep. N.E. 2, Univ. of Manchester, England (Mar. 1968).Google Scholar
  166. 166.
    Y. Y. Hsu and J. M. Smith, J. Heat Transfer, 33(2): 176 (1961).CrossRefGoogle Scholar
  167. 167.
    S. S. Papell and D. D. Brown, ASME Paper 69-HT-27, presented at Eleventh National Heat Transfer Conference, Minneapolis, Minn., Aug. 3, 1969.Google Scholar
  168. 168.
    R. G. Deissier, Trans. ASME, 76(1): 73 (1954).Google Scholar
  169. 169.
    R. G. Deissier, NACA Rep. 1210 (1955).Google Scholar
  170. 170.
    K. Goldman, Chem. Eng. Progr. Symp. Ser., 50(11): 105 (1954).Google Scholar
  171. 171.
    F. W. Dittus and L. M. K. Boelter, in: Univ. of California Publications in Engineering, Vol. 2, UCLA, Los Angeles, Calif. (1930), p. 443.Google Scholar
  172. 172.
    E. R. Van Driest, Paper XII presented at Heat Transfer and Fluid Mechanics Institute, University of California, Los Angeles, June 23–25, 1955.Google Scholar
  173. 173.
    L. B. Koppel and J. M. Smith, J. Heat Transfer, 84(2): 157 (1962).CrossRefGoogle Scholar
  174. 174.
    R. G. Deissier, NASA TN D-2800 (1965).Google Scholar
  175. 175.
    W. F. Weiland Jr., Chem. Eng. Progr. Symp. Ser., 61(60):97 (1965).Google Scholar
  176. 176.
    M. F. Taylor, NASA TN D-2280 (1964).Google Scholar
  177. 177.
    P. M. Moretti and W. M. Kays, Rep. PG-1, Thermosciences Div., Mech. Eng. Dept., Stanford University, Stanford, Calif. (1964).Google Scholar
  178. 178.
    R. G. Deissier and A. F. Presler, in: International Developments in Heat Transfer, ASME, New York (1963), p. 579.Google Scholar
  179. 179.
    B. S. Petukhov and V. N. Popov, High Temp., 1(1): 69 (1963).Google Scholar
  180. 180.
    V. N. Popov, in: Proceedings of the Second All-Soviet Union Conference on Heat and Mass Transfer, Vol 1, California University Press, Berkeley, Calif. (1966), p. 46.Google Scholar
  181. 181.
    H. Reichart, in: The Principles of Turbulent Heat Transfer. Recent Advances in Heat and Mass Transfer, McGraw-Hill Book Co., New York (1961), p. 223.Google Scholar
  182. 182.
    N. I. Melik-Pashaev, High Temp., 4(6): 789 (1966).Google Scholar
  183. 183.
    N. Zuber, General Electric Co. (NASA CR-80609) (May 25, 1966).Google Scholar
  184. 184.
    R. S. Thurston, Ph.D. Dissertation, University of New Mexico, Albuquerque, New Mexico (1966).Google Scholar
  185. 185.
    R. S. Thurston, J. D. Rogers and V. J. Skoglund, in: Advances in Cryogenic Engineering, Vol. 12, Plenum Press, New York (1967), p. 438.Google Scholar
  186. 186.
    A. Craya and J. Bouré, Compt. rend, 263A:477 (1966).Google Scholar
  187. 187.
    B. J. Walker and D. G. Harden, Paper 64-WA/HT-37, ASME, New York (Nov. 1964).Google Scholar
  188. 188.
    D. G. Harden and B. J. Walker, Paper 67-WA/HT-23, ASME, New York (Nov. 1967).Google Scholar
  189. 189.
    J. C. Friedly, J. L. Maganaro, and P. G. Kroeger, in: Advances in Cryogenic Engineering, Vol. 14, Plenum Press, New York (1969), p. 258.Google Scholar
  190. 190.
    G. B. Wallis and J. H. Heasley, J. Heat Transfer, 83(3): 363 (1961).CrossRefGoogle Scholar
  191. 191.
    A. A. Armand and V. V. Krasheninnikov, Thermal Engineering, 13(1): 83 (1966).Google Scholar
  192. 192.
    R. V. Smith, Ph.D. Dissertation, University of Oxford, England (1968).Google Scholar
  193. 193.
    R. C. Williamson and C. E. Chase, Phys. Rev., 176(1):285 (1968).CrossRefGoogle Scholar
  194. 194.
    H. Fauske, in: Proceedings of the 1961 Heat Transfer and Fluid Mechanics Institute, Stanford University Press, Stanford, Calif. (1961), p. 79.Google Scholar
  195. 195.
    J. E. Gruen and R. W. Moulton, “Metastable Flow of Steam-water Mixtures,’’ presented at AlChE Fundamentals of Fluid Mechanics Symposium, Detroit, Mich., 1966.Google Scholar
  196. 196.
    F. J. Moody, J. Heat Transfer, 87(1): 134 (1965).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • R. C. Hendricks
    • 1
  • R. J. Simoneau
    • 1
  • R. V. Smith
    • 2
  1. 1.NASA Lewis Research CenterClevelandUSA
  2. 2.NBS Institute for Basic StandardsBoulderUSA

Personalised recommendations