Advertisement

Measurements of the Dielectric Constant of Saturated Liquid Oxygen

  • B. A. Younglove
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 15)

Abstract

Accurate values of the dielectric constant of saturated liquid oxygen are presented and are combined with Weber’s values of the densities of liquid oxygen [1,2] (also measured at this laboratory) to produce values for the Clausius-Mossotti function or “polarizability”
$$p = \frac{{\varepsilon - 1}}{{\varepsilon + 2}}\left( {\frac{1}{\rho }}\right)$$
(12.1)
where ρ is the density and ε the dielectric constant. The polarizability is of practical significance as it is a much more slowly varying function of density than the dielectric constant and consequently is useful as an interpolating and extrapolating function. Aside from this, the polarizability is of interest from a theoretical point of view [3], especially as to its density dependence. In making measurements on the saturation curve, as contrasted to measurements in the compressed liquid, one can observe the effect of a wide range of densities on the polarizability, while incurring only a modest pressure change.

Keywords

Dielectric Constant Dielectric Measurement Outer Cylinder Supporting Post Liquid Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Weber, in: Advances in Cryogenic Engineering, Vol. 15, Plenum Press, New York (1970) p. 50.Google Scholar
  2. 2.
    L. A. Weber, to be published.Google Scholar
  3. 3.
    W. F. Brown, Jr., J. Chem. Phys., 18:1193 (1950).CrossRefGoogle Scholar
  4. 4.
    R. D. Goodwin, J. Res. NBS, 64C:231 (1961).Google Scholar
  5. 5.
    D. E. Diller, J. Chem. Phys., 49:3096 (1968).CrossRefGoogle Scholar
  6. 6.
    G. Breit and H. K. Orines,. Verslag. Afdeel, Natuurk. Kon. Akad. Wetenschap. (Amsterdam), 33:705 (1924); alsoGoogle Scholar
  7. 6a.
    G. Breit and H. K. Orines,. Proc. Acad. Sci. Amsterdam, 27:617 (1924).Google Scholar
  8. 7.
    W. Werner and W. H. Keesom, Verslag. Afdeei. Natuurk. Kon. Akad. Wetenschap. (Amsterdam), 35:18 (1926);Google Scholar
  9. 7a.
    W. Werner and W. H. Keesom, also Proc. Acad. Sci. Amsterdam, 29:306 (1926).Google Scholar
  10. 8.
    E. Kanda, Bull. Chem. Soc. (Japan), 12:473 (1937).CrossRefGoogle Scholar
  11. 9.
    C. K. Hersh, G. M. Platz, and R. J. Swehla, J. Phys. Chenu 63:1968 (1959).CrossRefGoogle Scholar
  12. 10.
    A. F. Dunn, Can. J. Phys., 42:1489 (1964).CrossRefGoogle Scholar
  13. 11.
    J. W. Stewart, J. Chem. Phys., 40:3297 (1964).CrossRefGoogle Scholar
  14. 12.
    B. A. Younglove, J. Chem. Phys., 48:4181 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • B. A. Younglove
    • 1
  1. 1.NBS Institute for Basic StandardsBoulderUSA

Personalised recommendations