Skip to main content

Drug Metabolism: Review of Principles and the Fate of One-Ring Psychotomimetics

  • Chapter
Book cover Stimulants

Part of the book series: Handbook of Psychopharmacology ((SIBN,volume 11))

Abstract

Interest in the metabolic fate of compounds foreign to the body (xenobiotics) has intensified dramatically during the past decade. Research efforts are derived today from a variety of disciplines and any attempt to review the entire field is likely to require a “team of experts.” Fortunately, a number of books that cover various aspects of drug metabolism have appeared recently. The most chemically oriented is the Testa and Jenner monograph (1976), which provides an excellent description of biotransformation processes with much fine molecular detail. The Chemical Society, London, publishes a good review series entitled “Foreign Compound Metabolism in Mammals” (Hathway, 1975). A bibliographic survey, “The Fate of Drugs in the Organism” (Hirtz, 1976), has recorded 9000 references (through about 1972) dealing with various aspects of drug metabolism. Two textbook-type publications (Goldstein et al., 1974; La Du et al., 1971) are mainly concerned with the fate and mechanism of action of small molecules. The more traditional textbooks in medicinal chemistry contain good chapters on drug metabolism (McMahon, 1970; Daniels and Jorgensen, 1977). Biologically oriented material will be found in the series “Concepts in Biochemical Pharmacology,” particularly Part 2 (Brodie and Gillette, 1971) and Part 3 (Gillette and Mitchell, 1975). The publications of the proceedings of a number of symposia provide first-rate discussions of specific topics. Two symposium publications focus on in vitro aspects of microsomal oxidations (Estabrook et al., 1973a; Gillette et al., 1969).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboul-Enein, H. Y., Schauberger, C. W., Hansen, A. R., and Fischer, L. J., 1975, Synthesis of an active hydroxylated glutethimide metabolite and some related analogs with sedative-hypnotic and anticonvulsant properties, J. Med. Chem. 18:736–741.

    PubMed  Google Scholar 

  • Aldous, F. A. B., Barrass, B. C., Brewster, K., Buxton, D. A., Green, D. M., Pinder, R. M., Rich, P., Skeels, M., and Tutt, K. J., 1974, Structure-activity relationships in psychotomimetic phenylalkylamines, J. Med. Chem. 17:1100–1111.

    PubMed  Google Scholar 

  • Alexanderov, K., Brooks, P., King, H. W. S., Osborne, M. R., and Thompson, M. H., 1976, Comparison of the metabolism of benzo(a)-pyrene and binding to DNA caused by rat liver nucleii and microsomes, Chem. Biol. Interaction 12:269–277.

    Google Scholar 

  • Alles, G. A., 1933, The comparative physiological actions of dl-β-phenylisopropylamines. I. Pressor effect and toxicity, J. Pharmacol. Exp. Therap. 47:339–354.

    Google Scholar 

  • Alles, G. A., 1939, Comparative actions of optically isomeric phenisopropylamines, Am. J. Physiol. 126:420.

    Google Scholar 

  • Alleva, J. J., 1963, Metabolism of tranylcypromine-C14 and dl-amphetamine-C14 in the rat. J. Med. Chem. 6:621–624.

    PubMed  Google Scholar 

  • Andreoli, V. M., Danieli, B., and Tonon, G. C., 1973, Significance of methoxylated derivatives in amphetamine psychosis, Riv. Farmacol. Ter. 4:1a–21a.

    Google Scholar 

  • Angrist, B., and Gershon, S., 1971, A pilot study of pathogenic mechanisms in amphetamine psychosis utilizing differential effects of d and l amphetamines, Pharmakopsych. Neuro-Psychopharmakol. 4:64–75.

    Google Scholar 

  • Angrist, B. M., Schweitza, J. W., Friedhoff, A. J., and Gershon, S., 1970, Investigation of p-methoxyamphetamine excretion in amphetamine induced psychosis, Nature 225:651–652.

    PubMed  Google Scholar 

  • Angrist, B. M., Shopsin, B., and Gershon, S., 1971, Comparative psychotomimetic effects of stereoisomers of amphetamine, Nature 234:152–153.

    PubMed  Google Scholar 

  • Axelrod, J., 1955, The enzymatic deamination of amphetamine (Benzedrine), J. Biol. Chem. 214:753–763.

    PubMed  Google Scholar 

  • Axelrod, J., 1964, Enzymatic oxidation of epinephrine to adrenochrome by the salivary gland, Biochim. Biophys. Acta 85:247–254.

    PubMed  Google Scholar 

  • Axelrod, J., 1971, Methyltransferase enzymes in the metabolism of physiologically active compounds and drugs in Concepts in Biochemical Pharmacology, Part 2 (Brodie, B. B., and Gillette, J. R., eds.), pp. 609–619, Springer-Verlag, Berlin.

    Google Scholar 

  • Bachur, N. R., 1976, Cytoplasmic aldo-keto reductases: a class of drug metabolizing enzymes, Science 193:595–597.

    PubMed  Google Scholar 

  • Bartsch, H., Miller, J. A., and Miller, E. C., 1972, Activation of carcinogenic aromatic hydroxylamines by enzymatic O-acetylation, Proc. Am. Assoc. Cancer Res. 13:12.

    Google Scholar 

  • Beckett, A. H., 1974, Separation and detection of unstable metabolites of amphetamines, analgetics, and phenothiazines in The Poisoned Patient: The Role of the Laboratory, Ciba Foundation Symposium 2b (new series), pp. 57–82, Elsevier, Amsterdam.

    Google Scholar 

  • Beckett, A. H., 1976, Metabolic N-oxidation of secondary and primary aromatic amines as a route to ring hydroxylation to various N-oxygenated products, and to dealkylation of secondary amines. Biochem. Pharmacol. 25:211–214.

    PubMed  Google Scholar 

  • Beckett, A. H., and Al-Sarraj, S., 1972, The mechanism of amphetamine enantiomorphs by liver microsomal preparations from different species. J. Pharm. Pharmacol. 24:174–176.

    PubMed  Google Scholar 

  • Beckett, A. H., and Al-Sarraj, S., 1973, The identification, properties and analysis of N-hydroxyamphetamine—a metabolite of amphetamine, J. Pharm. Pharmacol. 25:328–334.

    Google Scholar 

  • Beckett, A. H., and Bélanger, P. M., 1974a, Identification of three metabolic products of phentermine after liver microsomal incubation, Xenobiotica 5:509–519.

    Google Scholar 

  • Beckett, A. H., and Bélanger, P. M., 1974b, The mechanism of metabolic N-oxidation of phentermine and chlorphentermine to their hydroxylamino-and nitroso-compounds, J. Pharm. Pharmacol. 26:558–560.

    Google Scholar 

  • Beckett, A. H., and Bélanger, P. M., 1974c, Metabolism of chlorphentermine and phentermine in man to yield hydroxylamine, C-nitroso-and nitro-compounds, J. Pharm. Pharmacol. 26:205–206.

    PubMed  Google Scholar 

  • Beckett, A. H., and Bélanger, P. M., 1975a, Metabolic incorporation of oxygen into primary and secondary aliphatic amines and the consequences in carbon-nitrogen bond cleavage, J. Pharm. Pharmacol. 27:547–552.

    PubMed  Google Scholar 

  • Beckett, A. H., and Bélanger, P. M., 1975b, The identification and analysis of the metabolic products of mephentermine, J. Pharm. Pharmacol. 27:928–936.

    PubMed  Google Scholar 

  • Beckett, A. H., and Bélanger, P. M., 1976, Metabolic N-oxidation of secondary and primary aromatic amines as a route ring hydroxylation, to various N-oxygenated products, and to dealkylation of secondary amines, Biochem. Pharmacol. 25:211–214.

    PubMed  Google Scholar 

  • Beckett, A. H., and Gibson, G. C., 1975, Microsomal N-hydroxylation of dibenzylamine, Xenobiotica 5:677–686.

    PubMed  Google Scholar 

  • Beckett, A. H., and Midha, K. K., 1974, The identification of four metabolic products after incubation of p-methoxy-amphetamine with liver preparations of various species, Xenobiotica 4:297–312.

    PubMed  Google Scholar 

  • Beckett, A. H., and Morton, D. M., 1966, The metabolism of isomeric methoxyoxindoles, Biochem. Pharmacol. 15:1847–1855.

    Google Scholar 

  • Beckett, A. H., and Rowland, M., 1964, A specific method for the determination of amphetamine in urine, J. Pharm. Pharmacol. 16:27T–31T.

    Google Scholar 

  • Beckett, A. H., and Rowland, M., 1965a, Determination and indentification of amphetamine in urine, J. Pharm. Pharmacol. 17:59–60.

    PubMed  Google Scholar 

  • Beckett, A. H., and Rowland, M., 1965b, Urinary excretion kinetics of amphetamine in man, J. Pharm. Pharmacol. 17:628–639.

    PubMed  Google Scholar 

  • Beckett, A. H., and Shenoy, E. V. B., 1973, The effect of N-alkyl chain length and stereochemistry on the absorption, metabolism, and urinary excretion of N-alkylamphetamines in man, J. Pharm. Pharmacol. 25:793–799.

    PubMed  Google Scholar 

  • Beckett, A. H., and Tucker, G. T., 1966, A method for evaluation of some oral prolonged release forms of dexamphetamine in man, using urinary excretion data, J. Pharm. Pharmacol. 18:725–755.

    Google Scholar 

  • Beckett, A. H., Salmon, J. A., and Mitchard, M., 1969, The relation between blood levels and urinary excretion of amphetamine under controlled acidic and under fluctuating urinary pH values using (14C) amphetamine, J. Pharm. Pharmacol. 21:251–258.

    PubMed  Google Scholar 

  • Beckett, A. H., Coutts, R. T., and Ogunbona, F. A., 1973a, Metabolism of amphetamines, identification of N-oxygenated products by gas chromatography and mass spectometers, J. Pharm. Pharmacol. 25:708–717.

    PubMed  Google Scholar 

  • Beckett, A. H., Coutts, R. T., and Ogunbona, F. A., 1973b, N-ethyl-α-methyl-α-(m-trifluromethylbenzyl)nitrone—the major in vitro metabolic product of fenfluramine in guinea pig liver microsomal fractions, J. Pharm. Pharmacol. 25:190–192.

    PubMed  Google Scholar 

  • Beckett, A. H., Coutts, R. T., and Ogunbona, F. A., 1974a, The structure of nitrones derived from amphetamine, J. Pharm. Pharmacol. 26:312–316.

    PubMed  Google Scholar 

  • Beckett, A. H., Jones, G. R., and Al-Sarraj, S., 1974b, Metabolic N-and α-C-oxidation of norephedrine by rabbit liver microsomal fractions and synthesis of the metabolic products, J. Pharm. Pharmacol. 26:945–951.

    PubMed  Google Scholar 

  • Beland, F. A., and Harvey, R. G., 1976, Reactions of the K-region oxides of carcinogenic and related polycyclic hydrocarbons with nucleophiles: stereochemistry and regioselectivity, J. Am. Chem. Soc. 98:4963–4970.

    PubMed  Google Scholar 

  • Belvedere, G., Rovei, V., Pantarotto, C., and Frigerio, A., 1975, Identification of cyclobenzaprine-10,11-epoxide and other metabolites after incubation of cyclobenzaprine with rat liver microsomes, Xenobiotica 5:765–772.

    Google Scholar 

  • Benington, F., Morin, R. D., Beaton, J., Smythies, J. R., and Bradley, R. J., 1973, Comparative effects of stereoisomers of hallucinogenic amphetamines, Nature New Biol. 242:185–186.

    PubMed  Google Scholar 

  • Bernheim, F., and Bernheim, M. L. C., 1938, The oxidation of mescaline and certain other amines. J. Biol. Chem. 123:317–326.

    Google Scholar 

  • Bickel, M. H., 1969, The pharmacology and biochemistry of N-oxides, Pharmacol. Rev. 21:325–355.

    PubMed  Google Scholar 

  • Bickel, M. H., and Gigon, P. L., 1971, Metabolic interconversions and binding of imipramine, imipramine-N-oxide, and desmethylimipramine in rat liver slices, Xenobiotica 1:631–641.

    PubMed  Google Scholar 

  • Blank, C. L., Kissinger, P. T., and Adams, R. N., 1972, 5,6-Dihydroxyindole formation from oxidized 6-hydroxydopamine, Eur. J. Pharmacol. 19:391–394.

    PubMed  Google Scholar 

  • Blaschko, H., 1972, Introduction. Catecholamines 1922–1971, in Catecholamines (Blaschko, H., and Muscholl, E., eds.), p. 8, Springer-Verlag, Berlin.

    Google Scholar 

  • Blaschko, H., Ferro-Luzzi, G., and Hawes, R., 1958, Enzymic oxidation of mescaline by mammalian plasma, Biochem. Pharmacol. 1:101.

    Google Scholar 

  • Bleecker W., Capdevila, J., and Agosin, M., 1973, Sequential solubilization of microsomal mixed function oxidases, J. Biol. Chem. 248:8474–8481.

    PubMed  Google Scholar 

  • Block, W., 1953, In vitro-Versuche zum Einbau von 14C-Mescalin and 14C-β Phenylethylamin in Protein, III Mitteilung, Hoppe-Seyler’s Z. Phys. Chem. 294:49–56.

    Google Scholar 

  • Block, W., 1958, The mescaline psychosis in Chemical Concepts of Psychosis (Rinkel, M., and Denber, H. C., eds.), pp. 106–119, McDowell, Oblensky, New York.

    Google Scholar 

  • Bobik, A., Holder, G. M., Ryan, A. J., and Wiebe, L. I., 1975, Inhibitors of hepatic mixed function oxidases. 1. The metabolism of 2,6-dihydroxy-2-hydroxy-6-methoxy-and 2,6-dimethoxyacetophenones, Xenobiotica 5:65–72.

    PubMed  Google Scholar 

  • Boyd, D. R., Daly, J. W., and Jerina, D. M., 1972, Rearrangement of (1-2H)-and (2-2H) naphthalene 1,2-oxides to 1-naphthol mechanism of the NIH shift, Biochemistry 11:1961–1966.

    PubMed  Google Scholar 

  • Boyland, E., 1962, Mercapturic acid conjugation in Proc. First Int. Pharmacol. Meeting 6 (Brodie, B. B., and Erdos, E. G., eds.), pp. 65–76, Pergamon, Oxford.

    Google Scholar 

  • Boyland, E., 1971, Mercapturic acid conjugation, in Concepts in Biochemical Pharmacology, Part 2 (Brodie, B. B., and Gillette, J. R., eds.), pp. 584–608, Springer-Verlag, Berlin.

    Google Scholar 

  • Bridges, J. W., Gorrod, J. W., and Parke, D. V. (eds.), 1972, Biological Oxidation of Nitrogen in Organic Molecules, Wiley, New York.

    Google Scholar 

  • Brodie, B. B., and Gillette, J. R. (eds.), 1971, Concepts in Biochemical Pharmacology, Part 2, Springer-Verlag, Berlin.

    Google Scholar 

  • Brodie, B. B., Axelrod, J., Shore, P. A., and Udenfriend, S., 1954, Ascorbic acid in aromatic hydroxylation. II. Products formed by reaction of substrates with ascorbic acid, ferrous ion, and oxygen, J. Biol. Chem. 208:741–750.

    PubMed  Google Scholar 

  • Brodie, B. B., Axelrod, J., Cooper, J. R., Gaudette, L., La Du, B. N., Mitoma, C, and Udenfriend, S., 1955, Detoxification of drugs and other foreign compounds by liver microsomes, Science 121:603–604.

    PubMed  Google Scholar 

  • Brodie, B. B., Gillette, J. R., and La Du, B. N., 1958, Enzymatic metabolism of drugs and other foreign compounds, Ann. Rev. Biochem. 27:427–454.

    PubMed  Google Scholar 

  • Brodie, B. B., Cho, A. K., and Gessa, G. L., 1970, Possible role of p-hydroxynorephedrine in the depletion of norepinephrine induced by α-amphetamine and in tolerance to this drug, in Amphetamines and Related Compounds (Costa, E., and Garattini, S., eds.), pp. 217–230, Raven Press, New York.

    Google Scholar 

  • Browne, R. G., and Ho, B. T., 1975, Discriminative stimulus properties of mescaline: mescaline or metabolite? Pharmacol. Biochem. Behav. 3:109–114.

    PubMed  Google Scholar 

  • Bush, M. T., and Weller, W. L., 1972, Metabolic fate of hexobarbital (HB), Drug. Metab. Rev. 1:249–290.

    Google Scholar 

  • Butcher, L. L., 1975, Degenerative processes after punctate intracerebral administration of 6-hydroxydopamine, Neural Transmission 37:189–208.

    Google Scholar 

  • Calder, I. C., Creek, M. J., and Williams, P. J., 1973, N-hydroxylation of p-acetophenetidide as a factor in neprotoxicity, J. Med. Chem. 16:499–502.

    PubMed  Google Scholar 

  • Caldwell, J., Dring, L. G., and Williams, R. T., 1972a, Metabolism of (14C) methamphetamine in man, the guinea pig and the rat, Biochem. J. 129:11–22.

    PubMed  Google Scholar 

  • Caldwell, J., Dring, L. G., and Williams, R. T., 1972b, Norephedrines as metabolites of (14C) amphetamine in urine of man, Biochem. J. 129:23–24.

    PubMed  Google Scholar 

  • Caldwell, J., Köster, U., Smith, R. L., and Williams, R. T., 1975, Species variations in the N-oxidation of chlorphetamine, Biochem. Pharmacol. 24:2225–2232.

    PubMed  Google Scholar 

  • Carlsson, A., and Lindquist, M., 1962, In vivo decarboxylation of α-methyl DOPA and α-methyl metatyrosine, Acta Physiol. Scand. 54:87–94.

    PubMed  Google Scholar 

  • Chang, C. K., and Dolphin, D., 1976, Oxygen binding to mercaptide-heme complexes. Models for reduced cytochrome P-450, J. Am. Chem. Soc. 98:1607–1609.

    PubMed  Google Scholar 

  • Charlampous, K. D., Orengo, A., Walker, K. E., and Kinross-Wright, J., 1964, Metabolic fate of β-(3,4,5-trimethoxyphenyl) in humans: isolation and identification of 3,4,5-trimethoxyphenyl acetic acid, J. Pharmacol. Exp. Therap. 145:242–246.

    Google Scholar 

  • Charalampous, K. D., Walker, K. E., and Kinross-Wright, J., 1966, Metabolic fate of mescaline in man, Psychopharmacologia 9:48–63.

    PubMed  Google Scholar 

  • Cho, A. K., Lindeke, B., and Hodshon, B. J., 1972, The N-hydroxylation of phentermine (2-methyl-1-phenylisopropylamine) by rabbit liver microsomes, Res. Commun. Chem. Pathol. Pharmacol. 4:519–527.

    PubMed  Google Scholar 

  • Cho, A. K., Schaeffer, J. C., and Fischer, J. F., 1975a, Accumulation of 4-hydroxyamphetamine by rat stiatal homogenates, Biochem. Pharmacol. 24:1540–1542.

    PubMed  Google Scholar 

  • Cho, A. K., Hodshon, B. J., Lindeke, B., and Jonnson, J., 1975b, The p-hydroxylation of amphetamine and phentermine by rat liver microsomes, Xenobiotica 5:531–538.

    PubMed  Google Scholar 

  • Claude, A., 1969, Microsomes, endoplasmic reticulums, and interactions of cytoplasmic membranes, in Microsomes and Drug Oxidations (Gillette, J. R., Estabrook, R. W., Fouts, J. R., and Mannering, G. J., eds.), pp. 3–39, Academic Press, New York.

    Google Scholar 

  • Cohen, G., and Collins, M., 1970, Alkaloids from catecholamines in adrenal tissue: possible role in alcoholism, Science 167:1749–1751.

    PubMed  Google Scholar 

  • Colvin, M., Padgett, C. A., and Fenselau, C., 1973, A biologically active metabolite of cyclophosphamide, Cancer Res. 33:915–918.

    PubMed  Google Scholar 

  • Comai, K., and Gaylor, J. L., 1973, Existence and separation of three forms of cytochrome P-450 from rat liver microsomes, J. Biol. Chem. 248:4947–4955.

    PubMed  Google Scholar 

  • Connell, P. H., 1958, Amphetamine Psychosis, Chapman and Hall, London.

    Google Scholar 

  • Consolo, S., Dolfini, E., Garattini, S., and Valzelli, L., 1967, Desipramine and amphetamine metabolism, J. Pharm. Pharmacol. 19:253–256.

    PubMed  Google Scholar 

  • Coon, M. J., Strobe, H. W., and Boyer, R. F., 1973, On the mechanism of hydroxylation reactions catalyzed by cytochrome P-450, Drug. Metab. Disp. 1:92–97.

    Google Scholar 

  • Cooper, D. Y., Schleyer, H., and Rosenthal, O., 1973, Chemistry of cytochrome P-450 purified from endocrine systems, Drug. Metab. Disp. 1:21–28.

    Google Scholar 

  • Cooper, J. R., Axelrod, J., and Brodie, B. B., 1954, Inhibitory effects of β-diethylaminoethyl diphenyl-propylacetate on a variety of drug metabolic pathways in vitro, J. Pharmacol. Exp. Therap. 112:55–63.

    Google Scholar 

  • Costa, E., and Groppetti, 1970, Biosynthesis and storage of catecholamines in tissues of rats injected with various doses of d-amphetamine in Amphetamines and Related Compounds (Costa, E., and Garattini, S., eds.), pp. 231–255, Raven Press, New York.

    Google Scholar 

  • Coutts, R. T., Dawe, R., Dawson, G. W., and Kovach, S. H., 1976a, In vitro metabolism of 1-phenyl-2-propanone oxime in rat liver homogenates, Drug. Metab. Disp. 4:35–39.

    Google Scholar 

  • Coutts, R. T., Dawson, G. W., and Beckett, A. H., 1976b, In vitro metabolism of 1-phenyl-2-(n-propylamino)propane (N-propylamphetamine) by rat liver homogenates, J. Pharm. Pharmacol. 28:815–821.

    PubMed  Google Scholar 

  • Creaven, P. J., Barbee, T., and Roach, M. K., 1970, The interaction of ethanol and amphetamine metabolism, J. Pharm. Pharmacol. 22:828–831.

    PubMed  Google Scholar 

  • Dagne, E., and Castagnoli, N., Jr., 1972, Structure of hydroxycotinine, a nicotine metabolite, J. Med. Chem. 15:356–360.

    PubMed  Google Scholar 

  • Dajani, R. M., Gorrod, J. W., and Beckett, A. H., 1975, In vitro hepatic and extrahepatic reduction of (-)-nicotine-1′-N-oxide in rats, Biochem. Pharmacol. 24:109–117.

    PubMed  Google Scholar 

  • Daly, J., Axelrod, J., and Witkop, B., 1962, Methylation and demethylation in relation to the in vitro metabolism of mescaline, Ann. N.Y. Acad. Sci. 96:37–43.

    PubMed  Google Scholar 

  • Daly, J., Guroff, G., Udenfriend, S., and Witkop, B., 1967, Hydroxylation induced migrations of tritium of several substrates of liver aryl hydroxylases, Arch. Biochem. Biophys. 122:218–223.

    PubMed  Google Scholar 

  • Daly, J. W., Jerina, D. M., and Witkop, B., 1972, Arene oxides and the NIH shift: the metabolism toxicity and carcinogenicity of aromatic compounds, Experientia 28:1129–1149.

    PubMed  Google Scholar 

  • Daniels, T. C., and Jorgensen, E. C., 1977, Metabolic changes of drugs and related organic compounds, in Textbook of Organic, Medicinal, and Pharmaceutical Chemistry, 7th ed. (Wilson, C. O., Gisvold, O., and Dorerge, R. F., eds.), pp. 63–119, Lippincott, Philadelphia.

    Google Scholar 

  • Davis, J. M., and Janowsky, D. S., 1973, Amphetamine and methylphenidate psychosis in Frontiers in Catecholamine Research (Usdin, E., and Snyder, S., eds.), pp. 977–981, Pergamon Press, New York.

    Google Scholar 

  • Davis, M., Harrison, N. G., Ideo, G., Portmann, B., Labadarios, D., and Williams, R., 1976, Paracetamol metabolism in the rat: relationship to covalent binding and hepatic damage, Xenobiotica 6:249–256.

    PubMed  Google Scholar 

  • Davis, V. E., and Walsh, M. J., 1970, Alcohol, amines and alkaloids, a possible biochemical basis for alcohol addiction, Science 167:1005–1007.

    PubMed  Google Scholar 

  • Debackere, M., and Massart-Lëen, A. M., 1965, Identification and metabolism of amphetamine in some domestic animals, Arch. Int. Pharmacodyn. 155:459–462.

    Google Scholar 

  • De Matteis, F., 1973, Drug-induced destruction of cytochrome P-450, Drug Metab. Disp. 1:267–274.

    Google Scholar 

  • Demisch, L., and Seilar, N., 1975, Oxidative metabolism of mescaline in the central nervous system. V. In vitro deamination of mescaline to 3,4,5-trimethoxybenzoic acid, Biochem. Pharmacol. 24:575–580.

    PubMed  Google Scholar 

  • Dingell, J. V., and Bass, A. D., 1969, Inhibition of the hepatic metabolism of amphetamine by desipramine, Biochem. Pharmacol. 18:1535–1538.

    PubMed  Google Scholar 

  • Dring, L. G., and Caldwell, J., 1973, Metabolism of the amphetamines in man and laboratory animals, in Psychopharmacol. Sex. Disord. Drug Abuse, Proc. Symp. Congr. Coll. Int. Neuro-Psychopharmacol, 8th ed. (Ban, T. A., ed.), pp. 577–583, North-Holland, Amsterdam.

    Google Scholar 

  • Dring, L. G., Smith, R. L., and Williams, R. T., 1966, The fate of amphetamine in man and other animals, J. Pharm. Pharmacol. 18:402–404.

    PubMed  Google Scholar 

  • Dring, L. G., Smith, R. L., and Williams, R. T., 1968, A precursor of benzyl methyl ketone in amphetamine urine, Biochem. J. 109:10.

    Google Scholar 

  • Dring, L. G., Smith, R. L., and Williams, R. T., 1970, The metabolic fate of amphetamine in man and other species, Biochem. J. 116:425–435.

    PubMed  Google Scholar 

  • Dutton, G. J., 1971, Glucuronide-forming enzymes, in Concepts in Biochemical Pharmacology Part 2, (Brodie, B. B., and Gillette, J. R., eds.), pp. 378–400, Springer-Verlag, Berlin.

    Google Scholar 

  • Ellinwood, E. H., Jr., 1971, Assault and homicide associated with amphetamine abuse, Am. J. Psychiatry 127:1170–1175.

    PubMed  Google Scholar 

  • Ellison, T., Gutzait, L., and van Zoon, E. J., 1966, The comparative metabolism of d-amphetamine-14C in the rat, dog and monkey, J. Pharmacol. Exp. Therap. 152:383–387.

    Google Scholar 

  • El Masry, A. M., Smith, J. N., and Williams, R. T., 1956, Studies in detoxification. 69. The metabolism of alkylbenzenes: n-propylbenzene and n-butylbenzene with further observations on ethylbenzene. Biochem. J. 64:50–56.

    PubMed  Google Scholar 

  • Estabrook, R. W., Gillette, J. R., and Leibman, K. C. (eds.), 1973a, Microsomes and Drug Oxidations, Williams and Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Estabrook, R. W., Gillette, J. R., and Leibman, K. C. (eds.), 1973b, Microsomes and Drug Oxidations, Chapter 8, Extrahepatic drug metabolism, pp. 342–379, Williams and Wilkins Co., Baltimore, Maryland.

    Google Scholar 

  • Estabrook, R. W., Matsubara, T., Mason, J. I., Werringloer, J., and Baron, J., 1973c, Studies on the molecular function of cytochrome P-450 during drug metabolism, Drug Metab. Disp. 1:98–110.

    Google Scholar 

  • Estabrook, R. W., Gillette, J. R., and Leibman, K. C. (eds.), 1973d, Microsomes and Drug Oxidations, Chapter 5, Inducers of drug metabolism, pp. 199–325, Williams and Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Estabrook, R. W., Gillette, J. R., and Leibman, K. C., (eds.), 1973e, Microsomes and Drug Oxidations, Chapter 4, Effects of inhibitors on drug metabolism, pp. 162–198, Williams and Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Eyer, P., Kiese, M., Lipowsky, G., and Weger, N., 1974, Reactions of 4-dimethylaminophenol with hemoglobin, and autoxidation of 4-dimethylaminophenol, Chem.-Biol. Interactions 8:41–59.

    Google Scholar 

  • Faulkner, J. K., and Smith, K. J. A., 1972, Dealkylation and N-oxidation in the metabolism of 1-diethylcarbamyl-4-methylpiperazine in the rat, Xenobiotica 2:59–68.

    PubMed  Google Scholar 

  • Foster, A. B., Jarman, M., Stevens, J. D., Thomas, P., and Westwood, J. H., 1974, Isotope effects in O-and N-demethylations mediated by rat liver microsomes: an application of direct insertion electron impact mass spectrometry, Chem.-Biol. Interactions 9:327–340.

    Google Scholar 

  • Fouts, J. R., 1971, Some morphological characteristics of hepatocyte endoplasmic reticulum and some relationships between endoplasmic reticulum, microsomes, and drug metabolism, in Concepts in Biochemical Pharmacology, Part 2 (Brodie, B. B., and Gillette, J. R., eds.), pp. 243–250, Springer-Verlag, Berlin.

    Google Scholar 

  • Fouts, J. R., and Brodie, B. B., 1955, Inhibition of drug metabolic pathways by the potentiating agent, 2,4-dichloro-6-phenyl phenoxyethyldiethylamine, J. Pharmacol. Exp. Therap. 115:68–73.

    Google Scholar 

  • Fouts, J. R., and Brodie, B. B., 1956, On the mechanism of drug potentiation by iproniazid (2-isopropyl-1-isonicotinyl hydrazine), J. Pharmacol. Exp. Therap. 116:480–485.

    Google Scholar 

  • Franklin, M. R., 1974a, The formation of a 455 nm complex during cytochrome P-450-dependent N-hydroxyamphetamine metabolism, Mol. Pharmacol. 10:975–985.

    Google Scholar 

  • Franklin, M. R., 1974b, Complexes of metabolites of amphetamines with hepatic cytochrome P-450, Xenobiotica 5:133–142.

    Google Scholar 

  • Franklin, M. R., 1974c, Inhibition of the metabolism of N-substituted amphetamines by SKF 525-A and related compounds, Xenobiotica 4:143–150.

    Google Scholar 

  • Freter, K., Axelrod, J., and Witkop, B., 1957, Studies on the chemical and enzymatic oxidation of lysergic acid diethylamide, J. Am. Chem. Soc. 79:3191–3193.

    Google Scholar 

  • Friedhoff, A. H., and Goldstein, M., 1962, New developments in metabolism of mescaline and related amines, Ann. N.Y. Acad. Sci. 96:5–12.

    PubMed  Google Scholar 

  • Friedhoff, A. J., and Hollister, L. E., 1966, Comparison of the metabolism of 3,4-dimethoxyphenylethylamine and mescaline in humans, Biochem. Pharmacol. 15:269–273.

    PubMed  Google Scholar 

  • Friedhoff, A. J., and Schweitzer, J. W., 1971, Amphetamine metabolism in amphetamine psychosis, Pharmakopsych.-Novropsychopharm. 4:76–83.

    Google Scholar 

  • Friedhoff, A. J., and Van Winkle, E., 1962, Isolation and characterization of a compound from the urine of schizophrenics, Nature (London) 194:897–898.

    Google Scholar 

  • Fries, W., Kiese, M., and Lenk, W., 1973, Oxidation of polycyclic N-arylacetamides to glycolamides and hydroxamic acids in rabbits, Xenobiotica 3:525–540.

    PubMed  Google Scholar 

  • @@Frigerio, A., and Castagnoli, N., Jr. (eds.), 1974, Mass Spectrometry in Biochemistry and Medicine, Raven Press, New York.

    Google Scholar 

  • Frigerio, A., and Castagnoli, N., Jr. (eds.), 1976, Advances in Mass Spectrometry and Medicine, Vol. I, Spectrum Press, New York.

    Google Scholar 

  • Frigerio, A., Fanelli, R., Biandrati, P., Passerini, G., Morselli, P. L., and Garattini, S., 1972, Mass spectrometric characterization of carbamazepine-10,11-epoxide, a carbamazepine metabolite isolated from human urine, J. Pharm. Sci. 61:1144–1147.

    PubMed  Google Scholar 

  • Frigerio, A., Sossi, N., Belvedere, G., Pamtarotto, C., and Garattini, S., 1976, Identification of desmethylcyproheptadine-10,11-epoxide and other cyproheptadine metabolites in rat and human urine and from rat liver microsomes, in Advances in Mass Spectrometry in Biochemistry and Medicine, Vol. I (Frigerio, A., and Castagnoli, N., Jr., eds.), pp. 109–118, Spectrum Press, New York.

    Google Scholar 

  • Fujita, T., and Mannering, G. J., 1973, Electron transport compounds of hepatic microsomes, J. Bid. Chem. 248:8150–8156.

    Google Scholar 

  • Fuller, R. W., and Hines, C. W., 1967, d-Amphetamine levels in brain and other tissues of isolated and aggregated mice, Biochem. Pharmacol. 16:11–16.

    Google Scholar 

  • Fuller, R. W., Paru, C. J., and Mallory, B. B., 1973, Metabolism of amphetamines and β,β-difluoroamphetamine in phenobarbital-treated rats, Biochem. Pharmacol. 22:2059–2061.

    PubMed  Google Scholar 

  • Fuller, R. W., Perry, K. W., Baker, J. C., Parli, C. J., Lee, N., Day, W. A., and Molloy, B. B., 1974, Comparison of the oxime and the hydroxylamine derivatives of 4-chloroamphetamine as depletor of brain 5-hydroxyindoles, Biochem. Pharmacol. 23:3267–3272.

    PubMed  Google Scholar 

  • Gal, J., Wright, J., and Cho, A. K., 1976, In vitro metabolism of amphetamine: An apparent enantiomeric interaction, Res. Commun. Chem. Phath. Pharmacol. 15:525–539.

    Google Scholar 

  • Garattini, S., Marcucci, F., and Mussini, E., 1975, Biotransformation of drugs to pharmacologically active metabolites, in Concepts in Biochemical Pharmacology, Part 3 (Gillette, J. R., and Mitchell, J. R., eds.), pp. 113–130, Springer-Verlag, Berlin.

    Google Scholar 

  • Gelboin, H. V., 1971, Mechanisms of induction of drug metabolism enzymes, in Concepts in Biochemical Pharmacology, Part 2 (Brodie, B. B., and Gillette, J. R., eds.), pp. 421–451, Springer-Verlag, Berlin.

    Google Scholar 

  • Giarman, N. J., and Freedman, D. X., 1965, Biochemical aspects of the actions of psychotomimetic drugs, Pharmacol. Rev. 17:1–25.

    PubMed  Google Scholar 

  • Gielen, J. E., and Nebert, D. W., 1971, Microsomal hydroxylase induction in liver cell culture by phenobarbital, polycyclic hydrocarbons, and p,p′-DDT, Science 172:167–169.

    PubMed  Google Scholar 

  • Gill, E. W., Jones, G., and Lawrence, D. V., 1973, Contribution of the metabolite 7-hydroxy-Δ1-tetrahydro cannabinol towards the pharmacological activity of Δ1-tetrahydrocannabinol in mice, Biochem. Pharmacol. 22:175–184.

    PubMed  Google Scholar 

  • Gillette, J. R., 1971, Reductive enzymes in Concepts in Biochemical Pharmacology, Part 2 (Brodie, B. B., and Gillette, J. R., eds.), pp. 349–361, Springer-Verlag, Berlin.

    Google Scholar 

  • Gillette, J. R., 1974, A perspective on the role of chemically reactive metabolites of foreign compounds in toxicity, Biochem. Pharmacol. 23:2785–2794, 2927-2938.

    PubMed  Google Scholar 

  • Gillette, J. R., and Mitchell, J.R. (eds.), 1975, Concepts in Biochemical Pharmacology, Part 3, Springer-Verlag, Berlin.

    Google Scholar 

  • @@Gillette, J. R., Conney, A. H., Cosmides, G. J., Estabrook, R. W., Fouts, J. R., and Mannering, G. J. (eds.), 1969, Microsomes and Drug Oxidations, Academic Press, New York.

    Google Scholar 

  • Gillette, J. R., Mitchell, J. R., and Brodie, B. B., 1974, Biochemical basis for drug toxicity, Ann. Rev. Pharmacol. 14:271–288.

    Google Scholar 

  • Gold, M. S., and Ziegler, D. M., 1973, Dimethylaniline N-oxidase and aminopyrine N-demethylase activities of human liver tissue, Xenobiotica 3:179–189.

    PubMed  Google Scholar 

  • Goldstein, A., Aronow, L., and Kalman, S. M., 1974, Principles of Drug Action, 2nd ed., pp. 227–300, Wiley, New York.

    Google Scholar 

  • Goldstein, M., and Anagnoste, B., 1965, The conversion in vivo of D-amphetamine to (+)-p-hydroxynorephedrine, Biochim. Biophys. Acta 107:166–168.

    PubMed  Google Scholar 

  • Goldstein, M., McKeregham, M. R., and Lauber, E., 1964, The stereospecificity of the enzymatic amphetamine β-hydroxylation, Biochim. Biophys. Acta 89:191–193.

    PubMed  Google Scholar 

  • Gorrod, J. W., 1973a, Differentiation of various types of biological oxidation of nitrogen in organic compounds, Chem. Biol. Interactions 7:289–303.

    Google Scholar 

  • Gorrod, J. W., 1973b, Metabolism and excretion of amphetamines in man, in Frontiers in Catecholamine Research (Usdin, E., and Snyder, S., eds.), pp. 945–950, Pergamon Press, New York.

    Google Scholar 

  • Gorrod, J. W., 1976, The formation of an N-hydroxymethyl intermediate in the N-demethylation of N-methylcarbazole in vivo and in vitro, Xenobiotica 6:265–274.

    PubMed  Google Scholar 

  • Gorrod, J. W., and Jenner, P., 1975, Metabolic N-oxidation products of aliphatic amines as potential mediators in amine pharmacology, Int. J. Clin. Pharmacol. Biopharm. 12:180–185.

    PubMed  Google Scholar 

  • Gorrod, J. W., Temple, D. J., and Beckett, A. H., 1975, The differentiation of N-oxidation and N-dealkylation of N-ethyl-N-methylaniline by rabbit liver microsomes as distinct metabolic routes, Xenobiotica 5:465–474.

    PubMed  Google Scholar 

  • Gram, T. E., Rogers, L. A., and Fouts, J. R., 1967, Effect of pretreatment of rabbits with phenobarbital or 3-methylcholanthrene on the distribution of drug-metabolizing enzyme activity in subfractions of hepatic microsomes, J. Pharmacol. Exp. Therap. 157:435–445.

    Google Scholar 

  • Greenberg, R. S., and Cohen, G., 1973, Tetrahydroisoquinoline alkaloids: stimulated secretion from the adrenal medulla, J. Pharmacol. Exp. Therap. 184:119–128.

    Google Scholar 

  • Griffith, J. D., Cavanaugh, J. H., and Oates, J. A., 1970, Psychosis induced by the administration of d-amphetamine to human volunteers, in Psychotomimetic Drugs (Efron, D. H., ed.), pp. 287–294, Raven Press, New York.

    Google Scholar 

  • Groppetti, A., and Costa, E., 1969, Factors affecting the rate of disappearance of amphetamine in rats, Int. J. Neuropharmacol. 8:209–215.

    PubMed  Google Scholar 

  • Grover, P. L., 1974, K-Region epoxides of polycyclic hydrocarbons: formation and further metabolism by rat-lung preparation, Biochem. Pharmacol. 23:333–343.

    PubMed  Google Scholar 

  • Grover, P. L., and Sims, P., 1973, K-region epoxides of polycyclic hydrocarbons: reactions with nucleic acids and polyribonucleotides, Biochem. Pharmacol. 22:661–666.

    PubMed  Google Scholar 

  • Grover, P. L., Hewer, A., and Sims, P., 1971, Epoxides as microsomal metabolites of polycyclic hydrocarbons, FEBS Lett. 18:76–80.

    PubMed  Google Scholar 

  • Grover, P. L., Hewer, A., and Sims, P., 1972, The formation of K-region epoxides as microsomal metabolites of pyrene and benzo(a)pyrene, Biochem. Pharmacol. 21:2713–2726.

    PubMed  Google Scholar 

  • Grover, P. S., Hewer, A., and Sims, P., 1974, Metabolism of polycyclic hydrocarbons by rat-lung preparations, Biochem. Pharmacol. 23:323–332.

    PubMed  Google Scholar 

  • Groves, J. T., and Van der Puy, M., 1974, Stereospecific aliphatic hydroxylation by an iron based oxidant, J. Am. Chem. Soc. 96:5274–4275.

    Google Scholar 

  • Gunne, L.-M., and Anggard, E., 1973, Amphetamine metabolism in amphetamine-induced psychosis, in Frontiers in Catecholamine Research (Usdin, E., and Snyder, S., eds.), pp. 983–985, Raven Press, New York.

    Google Scholar 

  • Gunne, L.-M., and Galland, L., 1967, Stereoselective metabolism of amphetamine, Biochem. Pharmacol. 16:1371–1477.

    Google Scholar 

  • Haefely, W., Bartholini, G., and Pletcher, A., 1976, Monoaminergic drugs: General pharmacology, Pharmacol. Therap. B 2:185–218.

    Google Scholar 

  • Hald, J., and Jacobsen, E., 1948, A drug sensitising the organism to ethyl alcohol, Lancet 2:1001–1004.

    PubMed  Google Scholar 

  • Hamilton, G. H., 1964, Oxidation by molecular oxygen. II. The oxygen atom transfer mechanism for mixed-function oxidases and the model for mixed-function oxidases, J. Am. Chem. Soc. 86:3391–3392.

    Google Scholar 

  • Hansch, C., 1972, Quantitative relationships between lipophilic character and drug metabolism, Drug. Metab. Rev. 1:1–13.

    Google Scholar 

  • Harley-Mason, J., Laird, A. H., and Smythies, J. R., 1958, I. The metabolism of mescaline in the human, II. Delayed clinical reactions to mescaline, Confin. Neurol. Base 1 18:152–155.

    Google Scholar 

  • Hartley, R., and Smith, J. A., 1973, Formation in vitro of N-acetyl-3,4-dimethoxyphenylethylamine by pineal hydroxyindole-O-methyl transferase, Biochem. Pharmacol. 22:2425–2428.

    PubMed  Google Scholar 

  • Harvey, R. G., Goh, S. H., and Cortez, C., 1975, K-Region oxides and related oxidized metabolites of carcinogenic aromatic hydrocarbons, J. Am. Chem. Soc. 97:3468–3479.

    PubMed  Google Scholar 

  • Hathway, D. E. (senior reporter), 1975, Foreign Compound Metabolism in Mammals Vol. 3, The Chemical Society, London.

    Google Scholar 

  • Heidelberger, C., and Iype, P. T., 1967, Malignant transformation in vitro by carcinogenic hydrocarbons, Science 155:214–217.

    PubMed  Google Scholar 

  • Hewick, D. S., and Fouts, J. R., 1970, The metabolism in vitro and hepatic microsomal interactions of some enantiomeric drug substrates, Biochem. J. 117:833–841.

    PubMed  Google Scholar 

  • Hirtz, J., 1976, The Fate of Drugs in the Organism, Marcel Dekker, New York.

    Google Scholar 

  • Ho, B. T., Estevez, V., and Fritchie, G. E., 1971a, The fate of 2,5-dimethoxy-4-methylphenylamphetamine (STP, DOM) in monkey and rat brains, Brain Res. 29:166–169.

    PubMed  Google Scholar 

  • Ho, B. T., Estevez, V., Tansey, L. W., Englert, L. F., Creaven, P. J., and McIssac W. M., 1972b, Analogs of amphetamine. 5. Studies of excretory metabolites of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) in rats, J. Med. Chem. 14:158–160.

    Google Scholar 

  • Ho, B. T., Pong, S. F., Browne, R. G., and Walker, K. E., 1973, Acetylation of mescaline in rat brains, Experientia 29:275–277.

    PubMed  Google Scholar 

  • Hoffer, A., Smith, C., Callbeck, M. J., and Mahon, M., 1959, Physiological response to LSD and its relation to adrenochrome levels, J. Clin. Exp. Psychopath. 20:125–134.

    PubMed  Google Scholar 

  • Holmes, J. C., and Rutledge, C. O., 1976, Effects of the d-and l-isomers of amphetamine on uptake, release and catabolism of norepi, DA, and 5-HT in serial regions of rat brain, Biochem. Pharmacol. 25:447–451.

    PubMed  Google Scholar 

  • Holtzman, J., Gillette, J. R., and Milne, G. W. A., 1967, The metabolic products of naphthalene in mammalian species, J. Am. Chem. Soc. 89:6341–6344.

    PubMed  Google Scholar 

  • Horning, M. G., Butler, C. M., Stafford, M., Stillwell, R. N., Hill, R. M., Zion, T. E., Harvey, D. J., and Stillwell, W. G., 1976, Metabolism of drugs by the epoxide-diol pathway, in Advances in Mass Spectrometry in Biochemistry and Medicine, Vol. I (Frigerio A., and Castagnoli, N., eds.), pp. 91–108, Spectrum Press, New York.

    Google Scholar 

  • Hucker, H. B., 1973, Phenylacetone oxime—An intermediate in amphetamine deamination, Drug. Metab. Disp. 1:332–336.

    Google Scholar 

  • Hucker, H. B., Michnewicz, B. M., and Rhodes, R. E., 1971, Phenylacetone oxime—An intermediate in the oxidative deamination of amphetamine, Biochem. Pharmacol. 20:2123–2128.

    PubMed  Google Scholar 

  • Hucker, H. B., Balletto, A. J., Demetriades, J., Arison, B. H., and Zacchei, A. G., 1974, Epoxide metabolites of protriptyline in rat urine, Drug Metab. Disp. 3:80–84.

    Google Scholar 

  • Huszti, Z., and Borsy, J., 1966, Differences between aminé oxidases deaminating mescaline and the structurally related 3,4-dimethoxyphenylethylamine, Biochem. Pharmacol. 15:475–480.

    PubMed  Google Scholar 

  • Hutson, D. H., 1975a, Mechanisms of biotransformation: other oxidative routes of metabolism, in Foreign Compound Metabolism in Mammals, Vol. 3 (Hathway, D. E., senior reporter), pp. 512–520, The Chemical Society, London.

    Google Scholar 

  • Hutson, D. H., 1975b, Mechanisms of biotransformation: hydrolysis, in Foreign Compound Metabolism in Mammals, Vol. 3 (Hathway, D. E., senior reporter), pp. 522–523, The Chemical Society, London.

    Google Scholar 

  • Hutson, D. H., 1975c, Mechanisms of biotransformation: conjugation, in Foreign Compound Metabolism in Mammals, Vol. 3 (Hathway, D. E., senior reporter), pp. 533–549, The Chemical Society, London.

    Google Scholar 

  • Idänpään-Heikkila, J. E., and McIssac, W. M., 1970, 2,5-Dimethoxy-4-methylamphetamine—tissue, distribution and neurochemical action, Biochem. Pharmacol. 19:935–937.

    PubMed  Google Scholar 

  • Innes, I. R., and Nickerson, M., 1975, Norepinephrine, epinephrine, and the sympathomimetic amines, in The Pharmacological Basis of Therapeutics, 5th ed. (Goodman, L. S., and Gilman, A., eds.), pp. 496–499, Macmillan, New York.

    Google Scholar 

  • Israili, Z. H., Cucinell, S. A., Vaught, J., Davis, E., Lesser, J. M., and Dayton, P. G., 1973, Man and experimental animals: Formation of N-hydroxy metabolites, J. Pharmacol. Exp. Therap. 187:138–151.

    Google Scholar 

  • James, R. C., and Franklin, M. R., 1975, Comparisons of the formation of cytochrome P-450 complexes absorbing at 455 nm in rabbit and rat microsomes, Biochem. Pharmacol. 24:835–838.

    PubMed  Google Scholar 

  • Jerina, D. M., and Daly, J. W., 1974, Arene oxides: A new aspect of drug metabolism, Science 185:573–582.

    PubMed  Google Scholar 

  • Jerina, D. M., Daly, J. W., Witkop, B., Zalzman-Nirenberg, P., and Udenfriend, S., 1970, 1,2-Naphthalene oxide as an intermediate in the microsomal hydroxylation of naphthalene, Biochemistry 9:147–156.

    PubMed  Google Scholar 

  • Jerina, D. M., Daly, J. W., and Witkop, B., 1971, Migration of substituents during hydroxylation of aromatic substrates (NIH shift). Oxidations with peroxytrifluoroacetic acid, Biochemistry 10:366–372.

    PubMed  Google Scholar 

  • Jollow, D. J., Mitchell, J. R., Potter, W. Z., Davis, D. C., Gillette, J. R., and Brodie, B. B., 1973, Acetaminophen-induced hepatic necrosis II. Role of covalent binding in vivo, J. Pharmacol. Exp. Therap. 187:175–202.

    Google Scholar 

  • Jollow, D. J., Thorgeirsson, S. S., Potter, W. Z., Hashimoto, M., and Mitchell, J. R., 1974a, Acetaminophen-induced hepatic necrosis VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen, Pharmacology 12:251–271.

    PubMed  Google Scholar 

  • Jollow, D. J., Mitchell, J. R., Zampaglione, N., and Gillette, J. R., 1974b, Bromobenzene-induced hepatic necrosis: Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatic metabolite, Pharmacology 11:151–169.

    PubMed  Google Scholar 

  • Jonsson, J. A., 1974, Hydroxylation of amphetamine to parahydroxyamphetamine by rat liver microsomes, Biochem. Pharmacol. 23:3191–3197.

    PubMed  Google Scholar 

  • Jonsson, L.-E., and Gunne, L.-M., 1970, Clinical studies of amphetamine psychosis, in Amphetamines and Related Compounds (Costa, E., and Garattini, S., eds.), pp. 929–936, Raven Press, New York.

    Google Scholar 

  • Jori, A., and Caccia, S., 1974, Distribution of amphetamine and its hydroxylated metabolites in various areas of the rat brain, J. Pharm. Pharmacol. 26:746–748.

    PubMed  Google Scholar 

  • Kapadia, G. J., Rao, G. S., Leete, E., Fayez, M. B. E., Vaishnav, Y. N., and Fales, H. M., 1970, On the origin of carbon 1 in tetrahydroisoquinoline alkaloids, J. Am. Chem. Soc. 92:6943–6951.

    PubMed  Google Scholar 

  • Kasperek, G. J., and Bruice, T. C., 1972, The mechanism of the aromatization of arene oxides, J. Am. Chem. Soc. 94:198–202.

    Google Scholar 

  • Kaufman, S., and Friedman, S., 1965, Dopamine-β-hydroxylase, Pharmacol. Rev. 17:71–100.

    PubMed  Google Scholar 

  • Kaufman, S., Bridges, W. F., Eisenberg, F., and Friedman, S., 1967, The source of oxygen in phenylalanine hydroxylase and dopamine-β-hydroxylase catalyzed reactions, Biochem. Biophys. Res. Commun. 9:497–502.

    Google Scholar 

  • Keberle, H., Hoffmann, K., and Bernhard, K., 1962, The metabolism of glutethimide (Doriden), Experientia 18:105–111.

    PubMed  Google Scholar 

  • Keberle, H., Riess, W., and Hoffman, K., 1963, Stereospecific metabolism of optical antipodes of α-phenyl-α-ethyl glutarimide (Doriden), Arch. Int. Pharmacodyn. Therap. 142:117–124.

    Google Scholar 

  • Keller, J. W., and Heidelberger, C., 1976, Polycyclic K-region arene oxides products and kinetic of solvolysis, J. Am. Chem. Soc. 98:2228–2236.

    Google Scholar 

  • Keller, R. E., and Ellenbogen, W. C., 1952, The determination of D-amphetamine in body fluids, J. Pharmacol. Exp. Therap. 106:77–82.

    Google Scholar 

  • Kiese, M., 1966, The biochemical production of ferrihemoglobin-forming derivatives from aromatic amines, and mechanisms of ferrihemoglobin formation, Pharmacol. Rev. 18:1091–1161.

    PubMed  Google Scholar 

  • Kiese, M., and Lenk, W., 1973, ω and (ω-1)-hydroxylation of 4-chloropropronanilide by rabbits and rabbit liver microsomes, Biochem. Pharmacol. 22:2565–2574.

    Google Scholar 

  • Kiese, M., and Renna, G., 1976, Mechanism of the autocatalytic formation of ferrihemoglobin by N,N-dimethylaniline-N-oxide, Chem. Biol. Interaction 12:415–424.

    Google Scholar 

  • King, C. M., and Phillips, B., 1972, Mechanisms of introduction of fluorenylamine substituents into nucleic acid by rat liver, Proc. Am. Assoc. Cancer Res. 13:43.

    Google Scholar 

  • Kinoshita, N., Shears, B., and Gelboin, H. V., 1973, K-Region and non-K-region metabolism of benzo(a)pyrene by rat liver microsomes, Cancer Res. 33:1937–1944.

    PubMed  Google Scholar 

  • Knoll, J., 1970, Psychotomimetic effects of amphetamines, in Amphetamines and Related Compounds (Costa, E., and Garattini, S., eds.), pp. 761–780, Raven Press, New York.

    Google Scholar 

  • Kopin, I. J., 1972, Metabolic degradation of catecholamines. The relative importance of different pathways under physiological conditions and after administration of drugs, in Catecholamines (Blaschko, H., and Muscholl, E., eds.), pp. 270–282, Springer-Verlag, Berlin.

    Google Scholar 

  • Kostrzewa, R. M., and Jacobowitz, D. M., 1974, Pharmacological actions of 6-hydroxydopamine, Pharmacol. Rev. 26:199–288.

    PubMed  Google Scholar 

  • Kupfer, D., and Rosenfeld, J., 1973, A sensitive radioactive assay for hexobarbital hydroxylase in hepatic microsomes, Drug Metab. Disp. 1:760–765.

    Google Scholar 

  • La Du, B. N., and Shady, H., 1971, Esterases of human tissues, in Concepts in Biochemical Pharmacology, Part 2 (Brodie, B. B., and Gillette, J. R., eds.), pp. 477–499, Springer-Verlag, Berlin.

    Google Scholar 

  • La Du, B. N., Mandel, G. G., and Way, E. L., (eds.), 1971, Fundamentals of Drug Metabolism and Drug Disposition, Williams and Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Lal, H., Puri, S. K., and Fuller, G. C., 1970, Inhibition of hepatic hexobarbital metabolism by dextroamphetamine, Psychopharmacologia 16:395–398.

    PubMed  Google Scholar 

  • Leemann, H. G., and Fabbri, S., 1959, Über die absolute Kunfiguration der Lysergsäure, Helv. Chim. Acta 42:2696–2709.

    Google Scholar 

  • Leibman, K. C., 1971, Reduction of ketones in liver cytosol, Xenobiotica 1:97–104.

    PubMed  Google Scholar 

  • Levin, W., Jacobson, M., Sernatinger, E., and Kuntzman, R., 1973, Breakdown of cytochrome P-450 heme by secobarbital and other allyl-containing barbituates, Drug Metab. Disp. 1:275–283.

    Google Scholar 

  • Lewander, T., and Jonssan, J., 1973, Drugs and certain conditions interfering with the metabolism and excretion of amphetamine in the rat, in Psychopharmacol. Sex. Disord. Drug Abuse, Proc. Symp. Congr. Coll. Int. Neuropsychopharmacol., 8th ed. (Ban, T. A., ed.), pp. 577–583, North-Holland, Amsterdam.

    Google Scholar 

  • Lhoëst, G., Razzouk, C., and Mercier, M., 1976, Biological implications of the reaction possibilities of the proximate carcinogenic compounds, N-hydroxy-2-fluorenylacetamide, Biomed. Mass Spec. 3:21–27.

    Google Scholar 

  • Lipscomb, J. D., and Gunsalus, I. C., 1973, Structural aspects of the active site of cytochrome P-450, Drug Metab. Disp. 1:1–5.

    Google Scholar 

  • Locke, R. K., and Mayer, V. M., 1974, Physical evidence for the oxidative demethylation in vitro of 1-naphthyl-N-methyl carbamate by the Udenfriend chemical hydroxylation system, Biochem. Pharmacol. 23:1979–1984.

    PubMed  Google Scholar 

  • Lu, A. Y. H., West, S. B., Ryan, D., and Levin, W., 1973, Characterization of partially purified cytochromes P-450 and P-448 from rat liver microsomes, Drug Metab. Disp. 1:29–37.

    Google Scholar 

  • Malmfors, T., and Thoenen, H., (eds.), 1971 6-Hydroxydopamine and Catecholamine Neurons, North-Holland, Amsterdam.

    Google Scholar 

  • Mandel, L. R., Rosegay, A., Walker, R. W., Vanden Heuvel, W. J. A., and Rokaclz, J., 1974, 5-Methyltetrahydrofolic acid as a mediator in the formation of pyridoindoles, Science 186:741–743.

    PubMed  Google Scholar 

  • Mannering, G. J., 1971, Inhibition of drug metabolism, in Concepts in Biochemical Pharmacology, Part 2 (Brodie, B. B., and Gillette, J. R., eds.), pp. 452–476, Springer-Verlag, Berlin.

    Google Scholar 

  • Mansuy, D., Beaune, P., Chottard, J. C., Bartoli, J. F., and Gans, P., 1976, The nature of the “455 nm absorbing complex” formed during cytochrome P-450 dependent oxidative metabolism of amphetamine, Biochem. Pharmacol. 25:609–612.

    PubMed  Google Scholar 

  • Marckel, R. P., and Harrison, S. D., 1974, Inability of rat brain homogenate to oxidize amphetamine, Biochem. Pharmacol. 23:1146–1147.

    Google Scholar 

  • Marquardt, G. M., and DiStefano, V., 1974, The hepatic microsomal metabolism of β-3,4-methylenedioxyamphetamine (MDA), Life Sci. 15:1603–1610.

    PubMed  Google Scholar 

  • Mason, H. S., 1957, Mechanisms of oxygen metabolism, Advan. Enzymol. 19:79–233.

    Google Scholar 

  • Mason, H. S., Fowlke, W. L., and Peterson, E., 1955, Oxygen transfer and electron transport by the phenolase complex, J. Am. Chem. Soc. 77:2914–2915.

    Google Scholar 

  • Matin, S. B., Callery, P. S., Zweig, J. S., O’Brien, A., Rapoport, R., and Castagnoli, N., Jr., 1974, Stereochemical aspects and metabolite formation in the in vivo metabolism of the psychotomimetic amine 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane, J. Med. Chem. 17:877–882.

    PubMed  Google Scholar 

  • Maynert, E. W., Foreman, R. L., and Watabe, T., 1970, Epoxides as obligatory intermediates in the metabolism of olefins to glycols, J. Biol. Chem. 245:5234–5238.

    PubMed  Google Scholar 

  • McGraw, N. P., Callery, P. S., and Castagnoli, N., Jr., 1977, The in vitro stereoselective metabolism of the psychotomimetic amine 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane: An apparent enantiometic interaction, J. Med. Chem. 20:185–189.

    PubMed  Google Scholar 

  • McKennis, H., Jr., Turnbull, L. B., Bowman, E. R., and Schwartz, S. L., 1962, A corrected structure of a ketoamide arising from the metabolism of (-)-nicotine, J. Am. Chem. Soc. 84:4598–4599.

    Google Scholar 

  • McKennis, H., Jr., Schwartz, S. L., and Bowman, E. R., 1964, Alternate routes in the metabolic degradation of the pyrrolidine ring of nicotine, J. Biol. Chem. 239:3990–3996.

    PubMed  Google Scholar 

  • McMahon, R. E., 1966, Microsomal dealkylation of drugs: Substrate specificity and mechanism, J. Pharm. Sci. 55:457–466.

    Google Scholar 

  • McMahon, R. E., 1970, Drug metabolism, in Medicinal Chemistry, Part 1, 3rd ed. (A. Burger, ed.), pp. 50–63, Wiley (Interscience), New York.

    Google Scholar 

  • McMahon, R. E., 1971, Enzymatic oxidation and reduction of alcohols, aldehydes and ketones, in Concepts in Biochemical Pharmacology, Part 2 (Brodie, B. B., and Gillette, J. R., eds.), pp. 500–517, Springer-Verlag, Berlin.

    Google Scholar 

  • McMahon, R. E., Culp, H. W., and Occolowtz, J. C., 1969a, Studies on the hepatic microsomal N-dealkylation raaction. Molecular oxygen on the source of the oxygen atom, J. Am. Chem. Soc. 91:3389–3390.

    Google Scholar 

  • McMahon, R. E., Craig, J. C., and Pereira, W. E., Jr., 1969b, The microsomal oxygenation of ethylbenzene: Isotopic, stereochemical and induction studies, Arch. Biochem. 132:575–577.

    PubMed  Google Scholar 

  • Mechoulam, R., Varconi, H., Ben-Zvi, Z., Edery, H., and Grunfeld, U., 1972, Synthesis and biological activity of five tetrahydrocannabinol metabolites, J. Am. Chem. Soc. 94:7930–7931.

    PubMed  Google Scholar 

  • Mechoulam, R., McCallum, N. K., and Burstein, S., 1976, Recent advances in the chemistry and biochemistry of Cannabis, Chem. Rev. 76:75–109.

    Google Scholar 

  • Metzler, M., 1976, Metabolic activation of diethylstilbestrol: Indirect evidence for the formation of a stilbene oxide intermediate in hamster and rat, Biochem. Pharmacol. 24:1449–1453.

    Google Scholar 

  • Michalopoulos, G., Sattler, C. A., Sattler, G. L., and Pitot, H. C., 1976, Cytochrome P-450 induction by phenobarbital and 3-methylcholanthrene in primary culture of hepatocytes, Science 193:907–909.

    PubMed  Google Scholar 

  • Midha, K. K., 1974, Identification of two in vitro metabolites of 3,4-methylenedioxyamphetamine by gas-liquid chromatography-mass spectrometry, J. Chromatogr. 101:210–214.

    PubMed  Google Scholar 

  • Miller, E. C., and Miller, J. A., 1966, Mechanisms of chemical carcinogenesis: Nature of proximate carcinogens and interactions with macromolecules, Pharmacol. Rev. 18:805–838.

    PubMed  Google Scholar 

  • Miller, E. C., Miller, J. A., and Enomoto, M., 1964, The comparative carcinogenicities of 2-acetylaminofluorene and its N-hydroxy metabolite in mice, hamsters, and guinea pigs, Cancer Res. 24:2018–2031.

    PubMed  Google Scholar 

  • Miller, J. A., 1970, Carcinogenesis by chemicals: An overview, Cancer Res. 30:559–576.

    PubMed  Google Scholar 

  • Miller, J. A., and Miller, E. C., 1969, Metabolic activation of carcinogenic aromatic amines and amides via N-hydroxylation and N-hydroxyesterification and its relationship to ultimate carcinogens as electrophilic reagents, in Jerusalem Symp. Quantum Chem. Biochem. Vol. I, pp. 237–261, Israel Academy of Sciences and Humanities, Jerusalem.

    Google Scholar 

  • Mitchell, J. R., Jollow, D. J., Potter, W. Z., Davis, D. C., Gillette, J. R., and Brodie, B. B., 1973a, Acetaminophen-induced hepatic necrosis. 1. Role of drug metabolism, J. Pharmacol. Exp. Therap. 187:185–194.

    Google Scholar 

  • Mitchell, J. R., Jollow, D. J., Potter, W. Z., Gillette, J. R., and Brodie, B. B., 1973b, Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione, J. Pharmacol. Exp. Therap. 187:211–217.

    Google Scholar 

  • Mitchell, J. R., Potter, W. Z., Hinson, J. A., Snodgrass, W. R., Timbrell, J. A., and Gillette, J. R., 1975, Toxic Drug Reactions, in Concepts in Biochemical Pharmacology, Part 3 (Gillette, J. R., and Mitchell, J. R., eds.), pp. 383–419, Springer-Verlag, Berlin.

    Google Scholar 

  • Mitoma, C., 1970, Metabolic studies on trimethoxyamphetamines (34965), Proc. Soc. Exp. Biol. Med. 134:1162–1164.

    PubMed  Google Scholar 

  • Mitoma, C., Yasuda, D. M., Tagg, T., and Tanabe, M., 1967, Effect of deuteration of the O-CH3 group on the enzymatic demethylation of O-nitroanisole, Biochim. Biophys. Acta 136:566–567.

    PubMed  Google Scholar 

  • Mitra, C., and Guha, S. R., 1973, Amphetamine oxidation in rat brain, Biochem Pharmacol. 22:651–657.

    PubMed  Google Scholar 

  • Mokrasch, L. C., and Stevenson, I., 1962, The metabolism of mescaline with a note on correlations between metabolism and psychological effects, J. Nerv. Ment. Dis. 129:177–183.

    Google Scholar 

  • Moro-oka, Y., and Foote, C. S., 1976, Chemistry of Superoxide ion. 1. Oxidation of 3,5-di-tert-butylcatechol with KO2, J. Am. Chem. Soc. 98:1510–1514.

    PubMed  Google Scholar 

  • Murphy, P., 1973, Enzymatic oxidation of nicotine to nicotine Δ1,5 iminium ion. A newly discovered intermediate in the metabolism of nicotine, J. Biol. Chem. 248:2796–2800.

    PubMed  Google Scholar 

  • Musacchio, J. M., and Goldstein, M., 1967, The metabolism of mescaline-14C in rats, Biochem. Pharmacol. 16:963–970.

    PubMed  Google Scholar 

  • Muscholl, E., 1972, Adrenergic false transmitters, in Catecholamines (Blaschko, H., and Muscholl, E., eds.), pp. 618–660, Springer-Verlag, Berlin.

    Google Scholar 

  • Naranjo, C., Shulgin, A., and Sargent, T., 1967, Evaluation of 3,4-methylenedioxyamphetamine (MDA) as an adjunct to psychotherapy, Med. Pharmacol. Exp. 17:359–364.

    Google Scholar 

  • Neff, N., Rossi, G. V., Chase, G. D., and Rabinowitz, J. L., 1964, Distribution and metabolism of mescaline-C14 in the cat brain, J. Pharmacol. Exp. Therap. 144:1–7.

    Google Scholar 

  • Nguyen, T.-L., Gruenke, L. D., and Castagnoli, N., Jr., 1976, Metabolic N-demethylation of nicotine. Trapping of a reactive iminium species with cyanide ion, J. Med. Chem. 19:1168–1169.

    PubMed  Google Scholar 

  • Nichols, D. E., Barfknecht, C. F., and Rusterholz, D. B., 1973, Asymmetric synthesis of psychotomimetic phenylisopropylamines, J. Med. Chem. 16:480–483.

    PubMed  Google Scholar 

  • Niwaguchi, T., Inoue, T., and Nakahara, Y., 1974a, Studies on enzymatic dealkylation of D-lysergic acid diethylamide (LSD), Biochem. Pharmacol. 23:1073–1078.

    PubMed  Google Scholar 

  • Niwaguchi, T., Inoue, T., and Sakai, T., 1974b, Studies on the in vitro metabolism of compounds related to LSD, Biochem. Pharmacol. 23:3063–3066.

    PubMed  Google Scholar 

  • Oesch, F., 1973, Mammalian epoxide hydrases: inducible enzymes catalysing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds, Xenobiotica 3:305–337.

    PubMed  Google Scholar 

  • Oesch, F., Jerina, D. M., and Daly, J. W., 1971, Substrate specificity of hepatic epoxide hydrase in microsomes and in a purified preparation: Evidence for homologous enzymes, Arch. Biochem. Biophys. 144:253–261.

    PubMed  Google Scholar 

  • Oesch, F., Thuenen, H., and Fahrlaender, H., 1974, Epoxide hydrase in human liver biopsy specimens, assay and properties, Biochem. Pharmacol. 23:1307–1317.

    PubMed  Google Scholar 

  • Omura, T., and Sato, R., 1964, The carbon monoxide-binding pigment of liver microsomes, I. Evidence for its hemoprotein nature, J. Biol. Chem. 239:2370–2378.

    PubMed  Google Scholar 

  • Ono, T., and Bloch, K., 1975, Solubilization and partial characterization of rat liver squalene epoxidase, J. Biol. Chem. 250:1571–1579.

    PubMed  Google Scholar 

  • Orme-Johnson, W. H., and Ziegler, D. M., 1965, Alcohol mixed functions. Oxidase activity of mammalian liver microsomes, Biochem. Biophys. Res. Commun. 21:78–82.

    PubMed  Google Scholar 

  • Parke, D. V., 1968, The Biochemistry of Foreign Compounds, p. 218, Pergamon Press, Oxford.

    Google Scholar 

  • Parli, C. J., and McMahon, R. E., 1973, The mechanism of microsomal deamination: Heavy isotope studies, Drug Metab. Disp. 1:337–341.

    Google Scholar 

  • Parli, C. J., Wang, N., and McMahon, R. E., 1971, The mechanism of the oxidation of d-amphetamine by rabbit liver oxygenase. Oxygen-18 studies, Biochem. Biophys. Res. Commun. 43:1204–1209.

    PubMed  Google Scholar 

  • Pittman, K. A., 1970, Human metabolism of orally administered pentazocine, Biochem. Pharmacol. 19:1833–1836.

    PubMed  Google Scholar 

  • Pittman, K. A., Rosi, D., Cherniak, R., Merola, A. J., and Conway, W. D., 1969, Metabolism in vitro and in vivo pentazocine, Biochem. Pharmacol. 18:1673–1678.

    PubMed  Google Scholar 

  • Poirier, L. A., and Weisburger, J. H., 1974, Enzymatic reduction of carcinogenic aromatic nitro compounds by rat and mouse liver functions, Biochem. Pharmacol. 23:661–669.

    PubMed  Google Scholar 

  • Potter, W. Z., Davis, D. C., Mitchell, J. R., Jollow, D. J., Gillette, J. R., and Brodie, B. B., 1973, Acetaminophen-induced hepatic necrosis, III. Cytochrome P-450 mediated covalent binding in vitro, J. Pharmacol. Exp. Therap. 187:203–210.

    Google Scholar 

  • Potter, W. Z., Thorgeirsson, S. S., Jollow, D. J., and Mitchell, J. R., 1974, Acetaminophen-induced hepatic necrosis. V. Correlation of hepatic necrosis, covalent binding and glutathione depletion in hamsters, Pharmacology 12:129–143.

    PubMed  Google Scholar 

  • Racker, E., 1949, Aldehyde dehydrogenase, a diphosphopyridine nucleotide-linked enzyme, J. Biol. Chem. 177:883–892.

    PubMed  Google Scholar 

  • Radomski, J. L., and Brill, E., 1970, Bladder cancer induction by aromatic amines: Role of N-hydroxy metabolites, Science 167:992–993.

    PubMed  Google Scholar 

  • Radomski, J. L., and Brill, E., 1971, The role of N-oxidation products of aromatic amines in the induction of bladder cancer in the dog, Arch. Toxikol. 28:1461–1467.

    Google Scholar 

  • Rajagopalan, K. V., Fridovich, I., and Handler, P., 1962, Hepatic aldehyde oxidase. I. Purification and properties, J. Biol. Chem. 237:922–928.

    PubMed  Google Scholar 

  • Rentsch, G., and Johnston, A., 1976, The effect of prolonged administration of allylisopropylacetylurea to rats on cytochrome P-450 and other liver haemoproteins, Xenobiotica 6:151–158.

    PubMed  Google Scholar 

  • Riceberg, L. J., Simon, M., Van Vunakis, H., and Abeles, R. H., 1975, Effect of aminoacetronitrile, an amine oxidase inhibitor, on mescaline metabolism in the rabbit, Biochem. Pharmacol. 24:119–125.

    PubMed  Google Scholar 

  • Rommelspacher, H., Honecker, H., Schulze, G., and Strauss, S. M., 1974, The hydroxylation of d-amphetamine by liver microsomes of the male rat, Biochem. Pharmacol. 23:1065–1071.

    PubMed  Google Scholar 

  • Rowland, M., and Beckett, A. H., 1966, The amphetamines: clinical and pharmacokinetic implications of recent studies on assay procedure and urinary excretion in man, Arzneim.-Forsch. 16:1369–1373.

    Google Scholar 

  • Roy, A. B., 1971, Sulphate conjugation enzymes, in Concepts in Biochemical Pharmacology, Part 2 (Brodie, B. B., and Gillette, J. R., eds.), pp. 536–563, Springer-Verlag, Berlin.

    Google Scholar 

  • Saavedra, J. M., and Axelrod, J., 1972, Psychotomimetic N-methylated tryptamines: Formation in brain in vivo and in vitro, Science 175:1365–1370.

    PubMed  Google Scholar 

  • Sadèe, W., Garland, W., and Castagnoli, N., Jr., 1971, Microsomal 3-hydroxylation of 1,4-benzodiazepines, J. Med. Chem. 14:643–645.

    PubMed  Google Scholar 

  • Sandler, M., Carter, S. B., Hunter, K. R., and Stern, G. M., 1973, Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-dopa in man, Nature 241:439–443.

    PubMed  Google Scholar 

  • Saner, A., and Thoenen, H., 1971, Model experiments on the molecular mechanism of action of 6-hydroxydopamine, Mol. Pharmacol. 7:147–154.

    PubMed  Google Scholar 

  • Sankar, D. V. S., 1975, LSD—A Total Study, pp. 255–265, P.J.D. Pub., Ltd., Westbury, New York.

    Google Scholar 

  • Sargent, T., III, Shulgin, A. T., and Kusubov, N., 1976, Quantitative measurement of demethylation of 14C-methoxyl labeled DMPEA and TMA-2 in rats, Psychopharmacol. Commun. 2:199–206.

    PubMed  Google Scholar 

  • Sato, R., Haruhiku, S., and Imai, Y., 1973, Partial purification and some spectral properties of hepatic microsomal P-450, Drug Metab. Disp. 1:6–11.

    Google Scholar 

  • Schmidt, H.-L., Möller, M. R., and Weber, N., 1973, Über den Einfluss von Substituenten auf die mikrosomale Entalkylierung aromatischer N-, O-, und S-Alkylverbindungen, Biochem. Pharmacol. 22:2989–2996.

    PubMed  Google Scholar 

  • Schwartz, M. A., and Postma, E., 1968, Metabolism of diazepam in vitro, Biochem. Pharmacol. 17:2443–2449.

    PubMed  Google Scholar 

  • Segal, D. S., 1975, Behavioral characterization of d-and l-amphetamines: Neurochemical implications, Science 190:475–477.

    PubMed  Google Scholar 

  • Seiler, N., and Demisch, L., 1974a, Oxidative metabolism of mescaline in the central nervous system—III. Side chain degradation of mescaline and formation of 3,4,5-trimethoxybenzoic acid in vivo, Biochem. Pharmacol. 23:259–271.

    PubMed  Google Scholar 

  • Seiler, N., and Demisch, L., 1974b, IV. In vivo metabolism of mescaline and 2,3,4-trimethoxyphenylethylamine, Biochem. Pharmacol. 23:273–287.

    PubMed  Google Scholar 

  • Selkirk, J. K., Huberman, E., and Heidelberger, C., 1971, An epoxide is an intermediate in the microsomal metabolism of the chemical carcinogen, dibenz(a,b)anthracene, Biochem. Biophys. Res. Commun. 43:1010–1016.

    PubMed  Google Scholar 

  • Senoh, S., Witkop, B., Creveling, C. R., and Udenfriend, S., 1959, 2,4,5-Tri-hydroxyphenethylamine, a new metabolite of 3,4-dihydroxyphenethylamine, J. Am. Chem. Soc. 81:1768–1769.

    Google Scholar 

  • Sever, P. S., Dring, L. G., and Williams, R. T., 1973a, The metabolism of hydroxyamphetamines in man and animals: 4′-hydroxy(14C)amphetamine (paredrine), Biochem. Soc. Trans. 1:1158–1159.

    Google Scholar 

  • Sever, P. S., Caldwell, J., Dring, L. G., and Williams, R. T., 1973b, Metabolism of amphetamine in dependent subjects, Eur. J. Clin. Pharmacol. 6:177–180.

    PubMed  Google Scholar 

  • Sever, P. S., Dring, L. G., and Williams, R. T., 1976, Urinary metabolites of p-hydroxyamphetamine in man, rat and guinea pig, Xenobiotica 6:345–353.

    PubMed  Google Scholar 

  • Shah, N. S., and Himmich, H. E., 1971, Study with mescaline-8-C14 in mice: effect of amine oxidase inhibitors on metabolism, Neuropharmacology 10:547–556.

    PubMed  Google Scholar 

  • @@Shugar, D. (ed.), 1969, Biochemical aspects of antimetabolites and of drug hydroxylation, in Fed. Eur. Biochem. Soc. Proc. 16, Academic Press, New York.

    Google Scholar 

  • Shulgin, A. T., 1964, Psychotomimetic amphetamines. II. Methoxy 3,4-dialkoxyamphetamines, Experientia 20:366–367.

    PubMed  Google Scholar 

  • Shulgin, A. T., 1973, Stereospecific requirements for hallucinogenesis, J. Pharm. Pharmacol. 25:271–272.

    PubMed  Google Scholar 

  • Shulgin, A. T., Sargent, T., and Naranjo, C., 1969, Structure-activity relationships of one-ring psychotomimetics, Nature 221:537–541.

    PubMed  Google Scholar 

  • Sims, P., Grover, P. L., Kuroki, T., Huberman, E., Marquardt, H., Selkirk, J. K., and Heidelberger, C., 1973, The metabolism of benz(a)anthracene and dibenz(a,h)anthracene and their related “K-region” epoxides, cis-dihydrodiols and phenols by hamster embryo cells, Biochem. Pharmacol. 22:1–9.

    PubMed  Google Scholar 

  • Sisenwine, S. F., Tio, C. G., Shrader, S. R., and Roelius, H. W., 1970, The biotransformation of protriptyline in man, pig and dog, J. Pharmacol. Exp. Therap. 175:51–59.

    Google Scholar 

  • Sjoerdsma, A., and Von Studnitz, W., 1963, Dopamine-β-oxidase activity in man, using hydroxyamphetamine as substrate, Br. J. Pharmacol. 20:278–284.

    Google Scholar 

  • Slotta, K. H., and Muller, J., 1936, On the catabolism of mescaline and mescaline-like substances in the organism, Hoppe-Seyler’s Z. 238:14–22.

    Google Scholar 

  • Smith, J. N., Smithies, R. H., and Williams, R. T., 1954, Studies in detoxification: 59. The metabolism of alkybenzenes. The biological reduction of ketones derived from alkylbenzenes, Biochem. J. 57:74–76.

    PubMed  Google Scholar 

  • Smith, R. L., and Dring, L. G., 1970, Patterns of metabolism of β-phenylisopropylamines in man and other species, in Amphetamines and Related Compounds (Costa, E., and Garattini, S., eds.), pp. 121–139, Raven Press, New York.

    Google Scholar 

  • Smythies, J. R., 1963, Schizophrenia: Chemistry, Metabolism and Treatment, pp. 1–86, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Snyder, S. H., Faillanie, L. A., and Weingartner, H., 1968, DOM (STP) a new hallucinogenic drug, and DOET: effects in normal subjects, Am. J. Psychiat. 125:357–364.

    Google Scholar 

  • Stein, L., and Wise, C. D., 1971, Possible etiology of schizophrenia: Progressive damage to the noradrenergic reward system by 6-hydroxydopamine, Science 171:1032–1036.

    PubMed  Google Scholar 

  • Sugimura, T., Okabe, K., and Nagao, M., 1966, The metabolism of 4-nitroquinoline-1-oxide, a carcinogen, III. An enzyme catalyzing the conversion of 4-nitroquinoline-1-oxide to 4-hydroxyaminoquinoline-1-oxide in rat liver and hepatomas, Cancer Res. 26:1715–1721.

    Google Scholar 

  • Szara, S., and Axelrod, J., 1959, Hydroxylation and N-demethylation of N,N-dimethyltryptamine, Experientia 15:216–220.

    PubMed  Google Scholar 

  • Tabor, C. W., Tabor, H., and Rosenthal, S. M., 1954, Purification of amine oxidase from beef plasma, J. Biol. Chem. 208:645–661.

    PubMed  Google Scholar 

  • Takamizawa, A., Matsumoto, S., Iwata, T., Tochino, Y., Katagiri, K., Yamaguchi, K., and Shiratori, O., 1975, Studies on cyclophophamide metabolites and their related compounds. Preparation of an active species of cyclophosphimide and related compounds, J. Med. Chem. 18:376–383.

    PubMed  Google Scholar 

  • Tansey, L. W., Estevez, V. S., and Ho, B. T., 1975, Metabolic study of 2,5-dimethoxy-4-ethylamphetamine (DOET) in rats, Proc. West. Pharmacol. Soc. 18:132.

    Google Scholar 

  • Taska, R. J., and Schoolar, J. C., 1972, Placental transfer and fetal distribution of mescalin-14C in monkeys, J. Pharmacol. Exp. Therap. 183:427–432.

    Google Scholar 

  • Taylor, K. M., and Snyder, S. H., 1970, Amphetamine: Differentiation by d and l isomers of behavior involving brain norepinephrine or dopamine, Science 168: 1487–1489.

    PubMed  Google Scholar 

  • Testa, B., and Jenner, P., 1976, Drug Metabolism: Chemical and Biochemical Aspects, Marcel Dekker, New York.

    Google Scholar 

  • Theorell, H., 1967, Function and structure of liver alcohol dehydrogenase, Harvey Lect. 61:17–41.

    PubMed  Google Scholar 

  • Thorgeirsson, S. S., Jollow, D. J., Sasame, H. A., Green, L., and Mitchell, J. R., 1973, The role of cytochrome P-450 in N-hydroxylation of 2-acetylamino fluorene, Mol. Pharmacol. 9:398–404.

    PubMed  Google Scholar 

  • Tipton, K. F., Houslay, M. D., and Mantle, T. J., 1976, The nature and locations of the multiple forms of monoamine oxidase, in Monoamine Oxidase and Its Inhibition (Wolsterholme, G. E. W., and Knight, J., eds.), pp. 5–31, Elsevier-North-Holland, Amsterdam.

    Google Scholar 

  • Turner, D. M., 1969, The metabolism of (14C) nicotine in the cat, Biochem. J. 115:889–896.

    PubMed  Google Scholar 

  • Tyler, T. R., Buhs, R. P., and Vanden Heuval, W. J. A., 1973, Identification of the mononitro derivative of dapsone as a product from an oxidation in vitro, Biochem. Pharmacol. 22:1383–1385.

    PubMed  Google Scholar 

  • Ullrich, V., and Staudinger, H., 1969, Oxygen reactions in model systems, in Microsomes and Drug Oxidations (Gillette, J. R., Conney, A. H., Cosmider, G. J., Estabrook, R. W., Fouts, J. R., and Mannering, G. J., eds.), pp. 199–224, Academic Press, New York.

    Google Scholar 

  • Ullrich, V., and Staudinger, H., 1971, Model systems in studies of the chemistry and the enzymatic activation of oxygen, in Concepts in Biochemical Pharmacology, Part 2 (Brodie, B. B., and Gillette, J. R., eds.), pp. 251–263, Springer-Verlag, Berlin.

    Google Scholar 

  • Uyeno, E. T., Otis, L. S., and Mitoma, C., 1968, Behavioral evaluation of hallucinagenic trimethoxyamphetamines in squirrel monkeys (Saimiri sciureus), Commun. Behav. Biol. 1:832–890.

    Google Scholar 

  • Vehleke, H., 1973, Mechanisms of methemoglobin formation by therapeutic and environmental agents, in Pharmacology and the Future of Man (Loomis, T. A., ed.), pp. 124–136, Karger, Basel.

    Google Scholar 

  • Vessell, E. S. (ed.), 1971, Drug metabolism in man, Ann. N.Y. Acad. Sci. 179.

    Google Scholar 

  • Vessell, E. S., Lang, C. M., White, W. J., Passananti, G. T., Hill, R. N., Clemens, T. L., Liu, D. K., and Johnson, W. D., 1976, Environmental and genetic factors affecting the response of laboratory animals to drugs, Fed. Proc. 35:1125–1132.

    Google Scholar 

  • Vree, T. B., Muskens, A. Th. J. M., and Van Rossom, J. M., 1972, Excretion of amphetamines in human sweat, Arch. Int. Pharmacodyn. Ther. 99:311–317.

    Google Scholar 

  • Walsh, M. J., Davis, V. E., and Yamanaka, Y., 1970, Tetrahydropapaveroline: An alkaloid metabolite of dopamine in vitro, J. Pharmacol. Exp. Therap. 174:388–400.

    Google Scholar 

  • Wang, C. U., Chiu, C. W., and Bryan, G. T., 1975, Nitroreduction of carcinogenic 5-nitrothiophenes by rat tissue, Biochem. Pharmacol. 24:1563–1568.

    PubMed  Google Scholar 

  • Weber, W. W., 1971, Acetylating, deacetylating and amino acid conjugating enzymes, in Concepts in Biochemical Pharmacology, Part 2 (Brodie, B. B., and Gillette, J. R., eds.), pp. 564–583, Springer-Verlag, Berlin.

    Google Scholar 

  • Weinkam, R. J., Gal, J., Callery, P., and Castagnoli, N., Jr., 1976, Application of chemical ionization mass spectrometry to the study of stereoselective in vitro metabolism of 1-(3,5-dimethoxy-4-methylphenyl)-2-aminopropane, Anal. Chem. 48:203–209.

    PubMed  Google Scholar 

  • Weinstein, I. B., Jeffrey, A. M., Jennette, K. W., Blobstein, S. H., Harvey, R. G., Harris, C., Autrup, H., Kasai, H., and Nakanishi, K., 1976, Benzo(a)pyrene diol epoxides as intermediates in nucleic acid binding in vitro and in vivo, Science 193:592–595.

    PubMed  Google Scholar 

  • Weisburger, J. H., and Weisburger, E. K., 1973, Biochemical formation and properties of hydroxylamines and hydroxamic acids, Pharmacol. Rev. 25:1–66.

    PubMed  Google Scholar 

  • Wiberg, K. B., 1955, The deuterium isotope effect, Chem. Rev. 55:713–743.

    Google Scholar 

  • Willi, P., and Bickel, M. H., 1973, Liver metabolic reaction: Tertiary amine N-dealkylation, teriary amine N-oxidation, N-oxide reduction, and N-oxide N-dealkylation, Arch. Biochem. Biophys. 156:772–779.

    PubMed  Google Scholar 

  • Williams, R. T., 1974, Inter-species variations in the metabolism of xenobiotics, Biochem. Soc. Trans. 2:359–377.

    Google Scholar 

  • Williams, R. T., Caldwell, J., and Dring, L. G., 1973, Comparative metabolism of some amphetamines in various species, in Frontiers in Catecholamine Research (Usdin, E., and Snyder, S., eds.), pp. 927–932, Pergamon, New York.

    Google Scholar 

  • Wyatt, R. J., Erdelyi, E., DoAmaral, J. R., Elliott, G. R., Renson, J., and Barchas, J. D., 1975, Tryptoline formation by a preparation from brain with 5-methyltetrahydrofolic acid and tryptamine, Science 187:853–855.

    PubMed  Google Scholar 

  • Zeller, E. A., Barsky, J., Berman, E. R., Cherkas, M. S., and Fouts, J. R., 1958, Degradations of mescaline by amine oxidases, J. Pharmacol. Exp. Therap. 124:282–289.

    Google Scholar 

  • Ziegler, D. M., and Mitchell, C. H., 1972, Microsomal oxidase IV. Properties of a mixed function amine oxidase isolated from pig liver microsomes, Arch. Biochem. Biophys. 150:116–125.

    PubMed  Google Scholar 

  • Ziegler, D. M., McKee, E. M., and Leibman, K. C., 1973, Microsomal flavoprotein catalyzed N-oxidation of arylamines, in Microsomes and Drug Oxidations (Estabrook, R. W., Gillette, J. R., and Leibman, K. C., eds.), pp. 314–321, Williams and Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Zweig, J. S., and Castagnoli, N., Jr., 1974, Chemical conversion of the psychotomimetic amine 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane to 5-hydroxy-2,6-dimethylindole, J. Med. Chem. 17:747–749.

    PubMed  Google Scholar 

  • Zweig, J. S., and Castagnoli, N., Jr., 1975, Metabolic O-demethylation of the psychotomimetic amine l-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane, Psychopharm. Commun. 1:359–371.

    Google Scholar 

  • Zweig, J. S., and Castagnoli, N., Jr., 1977, In vitro metabolic O-demethylation of the psychotomimetic amine. 1-(2,5-dimethoxyl-4-methylphenyl)-2-aminopropane, J. Med. Chem. 20:414.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Castagnoli, N. (1978). Drug Metabolism: Review of Principles and the Fate of One-Ring Psychotomimetics. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Stimulants. Handbook of Psychopharmacology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0510-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0510-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0512-6

  • Online ISBN: 978-1-4757-0510-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics