Amphetamines: Structure-Activity Relationships

  • J. H. Biel
  • B. A. Bopp
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 11)


Amphetamine is a unique drug with respect to the simplicity of its structure and the multiplicity of its biological effects. Pharmacologically, amphetamine possesses central stimulant, anorexic, vasoconstrictor, and hyperthermic properties. Biochemically, amphetamine releases catecholamines from the neurons and inhibits the uptake of norepinephrine and dopamine but does not affect brain serotonin levels. It also is a moderately active inhibitor of monoamine oxidase. Clinically, amphetamine has been used as a stimulant, antidepressant, and appetite suppressant, but with repeated administration tolerance frequently develops to many of its effects. On chronic administration of increasingly higher doses, amphetamine may precipitate paranoid psychosis.


Phenyl Ring Stimulant Activity Central Stimulant Norepinephrine Uptake Inhibit Food Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balster, R. L., and Schuster, C. R., 1973, A comparison of d-amphetamine, l-amphetamine and methamphetamine self-administration in rhesus monkeys, Pharmacol. Biochem. Behav. 1:67–71.PubMedCrossRefGoogle Scholar
  2. Bartholini, G., and Pletscher, A., 1964, Two types of 5-hydroxytryptamine release from isolated blood platelets, Experientia 20:376–378.PubMedCrossRefGoogle Scholar
  3. Belleau, B., 1960, The synthesis of (±), (+) and (-) α-(3-thiamorpholinyl)benzhydrol, a new selective stimulant of the central nervous system, J. Med. Pharm. Chem. 2:553–562.CrossRefGoogle Scholar
  4. Beregi, L. G., Hugon, P., LeDouarec, J. C., Laubie, M., and Duhault, J., 1970, Structure-activity relationships in CF3 substituted phenethylamines, in Amphetamines and Related Compounds (E. Costa and S. Garattini, eds.), pp. 21–61, Raven Press, New York.Google Scholar
  5. Biel, J. H., 1970, Structure-activity relationships of amphetamine and derivatives, in Amphetamines and Related Compounds (E. Costa and S. Garattini, eds.), pp. 3–19, Raven Press, New York.Google Scholar
  6. Biel, J. H., Horita, A., and Drukker, A. E., 1964, Monoamine oxidase inhibitors (hydrazines), in Psychopharmacological Agents (M. Gordon, ed.), Vol. 1, pp. 359–443, Academic Press, New York.Google Scholar
  7. Boissier, J. R., Ratouis, R., and Dumont, C., 1966, Nouveaux derives de la phenylisopropylamine: syntheses et etude de l’activite anorexiante, Ann. Pharm. Fran. 24:57–68.Google Scholar
  8. Boissier, J. R., Hirtz, J., Dumont, C., and Gerardin, A., 1970, Some aspects of the metabolism of anorexic phenylisopropylamines in the rat, in Amphetamines and Related Compounds (E. Costa and S. Garattini, eds.) pp. 141–152, Raven Press, New York.Google Scholar
  9. Burgen, A. S. V., and Iversen, L. L., 1965, The inhibition of norepinephrine uptake by sympathomimetic amines in the rat isolated heart, Br. J. Pharmacol. 25:34–49.Google Scholar
  10. Burger, A., and Yost, W. L., 1948, Arylcycloalkylamines I. 2-phenyl-cyclopropylamine, J. Am. Chem. Soc. 70:2198–2201.CrossRefGoogle Scholar
  11. Carlsson, A., 1970, Structural specificity for inhibition of 14C-5-hydroxytryptamine uptake by cerebral slices, J. Pharm. Pharmacol. 22:729–732.PubMedCrossRefGoogle Scholar
  12. Cox, R. H., Jr., and Maickel, R. P., 1972, Comparison of anorexigenic and behavioral potency of phenethylamines, J. Pharmacol. Exp. Ther. 181:1–9.PubMedGoogle Scholar
  13. Coyle, J. T., and Snyder, S. H., 1969, Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas, J. Pharmacol. Exp. Ther. 170:221–231.PubMedGoogle Scholar
  14. Daly, J. W., Creveling, C. R., and Witkop, B., 1966, The chemorelease of norepinephrine from mouse hearts. Structure-activity relationships. I. Sympathomimetic and related amines, J. Med. Chem. 9:273–279.PubMedCrossRefGoogle Scholar
  15. Deneau, G. A., Yanagita, T., and Seevers, M. H. 1964, Self-administration of drugs by monkeys, Committee on Problems of Drug Dependence (NAS/NRC), pp. 3812-3821.Google Scholar
  16. Deneau, G., Yanagita, T., and Seevers, M. H., 1969, Self-administration of psycho-active substances by the monkey, Psychopharmacologia 16:30–48.PubMedCrossRefGoogle Scholar
  17. Dren, A. T., Jochimsen, W. G., and Plotnikoff, N. P., 1971, Comparison of pemoline, cocaine, methamphetamine and methylphenidate self-administration in monkeys, Pharmacologist 13:281.Google Scholar
  18. Dren, A. T., Jochimsen, W. G., and Plotnikoff, N. P., 1972, Comparison of pemoline with other psychostimulants as reinforcers of self-administration behavior in rhesus monkesy, Pharmacologist 14:59.Google Scholar
  19. Ellinwood, E. H., 1967, Amphetamine pyschosis I. Description of the individuals and process, J. Nerv. Mental Dis. 144:273–283.CrossRefGoogle Scholar
  20. Ellinwood, E. H., 1968, Amphetamine psychosis II. Theoretical considerations, Int. J. Neuropsychiat. 4:45–54.Google Scholar
  21. Fabing, H. D., 1955, New blocking agent against the development of LSD-25 psychosis, Science 121:208–210.PubMedCrossRefGoogle Scholar
  22. Fuller, R. W., 1966, Serotonin oxidation by rat brain monoamine oxidase: inhibition by 4-chloroamphetamine, Life Sci. 5:2247–2252.CrossRefGoogle Scholar
  23. Fuller, R. W., 1972, Selective inhibition of monoamine oxidase, in Advances in Biochemical Psychopharmacology (E. Costa and M. Sandier, eds.), Vol. 5, pp. 339–354, Raven Press, New York.Google Scholar
  24. Fuller, R. W., and Hines, C. W., 1970, Inhibition by p-chloroamphetamine of the conversion of 5-hydroxytryptamine to 5-hydroxyindoleacetic acid in rat brain. J. Pharm. Pharmacol. 22:634–635.PubMedCrossRefGoogle Scholar
  25. Fuller, R. W., and Molloy, B. B., 1974, Recent studies with 4-chloroamphetamine and some analogues, in Advances in Biochemical Psychopharmacology (E. Costa, G. L. Gessa, and M. Sandier, eds.), Vol. 10, pp. 195–205, Raven Press, New York.Google Scholar
  26. Fuller, R. W., Snoddy, H. D., Roush, B. W., and Molloy, B. B., 1973, Further structure-activity studies on the lowering of brain 5-hydroxyindoles by 4-chloroamphetamine, Neuropharmacology 12:33–42.PubMedCrossRefGoogle Scholar
  27. Fuller, R. W., Perry, K. W., Baker, J. C., Paru, C. J., Lee, N., Day, W. A., and Molloy, B. B., 1974a, Comparison of the oxime and the hydroxylamine derivatives of 4-chloroamphetamine as depeltors of brain 5-hydroxyindoles, Biochem. Pharmacol. 23:3267–3272.PubMedCrossRefGoogle Scholar
  28. Fuller, R. W., Perry, K. W., Snoddy, H. D., and Molloy, B. B., 1974b, Comparison of the specificity of 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine and chlorimipramine as amine uptake inhibitors in mice, Eur. J. Pharmacol. 28:233–236.PubMedCrossRefGoogle Scholar
  29. Fuller, R. W., Perry, K. W., and Molloy, B. B., 1974c, Effect of an uptake inhibitor on serotonin metabolism in rat brain: studies with 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine (Lilly 110140), Life Sci. 15:1161–1171.PubMedCrossRefGoogle Scholar
  30. Gallager, D. W., and Sanders-Bush, E., 1973, In vivo measurement of the release of 5-hydroxytryptamine (5-HT) from the hippocampus of the rat: effect of Ro-4-1284, pargyline, and p-chloroamphetamine (PCA), Fed. Proc. 32:303.Google Scholar
  31. Griffith, J., Cavanaugh, J., and Oates, J., 1968, Paranoid psychosis in man induced by administration of d-amphetamine. Pharmacologist 10:180.Google Scholar
  32. Harvey, J. A., McMaster, S. E., and Yunger, L. M., 1975, p-Chloroamphetamine: selective neurotoxic action in brain, Science 187:841–843.PubMedCrossRefGoogle Scholar
  33. Hendley, E. D., and Snyder, S. H., 1971, Correlation between psychotropic potency of psychotomimetic methoxyamphetamines and their inhibition of 3H-normetanephrine uptake in rat cerebral cortex, Nature 229:264–266.PubMedCrossRefGoogle Scholar
  34. Hoffmeister, F., and Goldberg, S. R., 1973, A comparison of chlorpromazine, imipramine, morphine, and d-amphetamine self-administration in cocaine-dependent rhesus monkeys, J. Pharmacol. Exp. Ther. 187:8–14.PubMedGoogle Scholar
  35. Holm, T., Huus, I., Kopf, R., Møller-Nielsen, I., and Petersen, P. V., 1960, Pharmacology of a series of nuclear substituted phenyl-tertiary-butylamines with particular reference to anorexigenic and central stimulant properties, Acta Pharmacol. Toxicol. 17:121–136.CrossRefGoogle Scholar
  36. Iversen, L. L., 1963, The uptake of norepinephrine by the isolated perfused rat heart, Br.J. Pharmacol. 21:523–537.Google Scholar
  37. Iversen, L. L., 1965, The uptake of catecholamines at high perfusion concentrations in the isolated rat heart: a novel catecholamine uptake processor. J. Pharmacol. 25:18–33.Google Scholar
  38. Knoll, J., and Magyar, K., 1972, Some puzzling pharmacological effects of monoamine oxidase inhibitors, in Advances in Biochemical Pharmacology (E. Costa and M. Sandler, eds.), Vol. 5, pp. 393–408, Raven Press, New York.Google Scholar
  39. Krueger, G. L., and McGrath, W. R., 1964, 2-Benzylpiperidines and related compounds, in Psychopharmacological Agents (M. Gordon, ed.), Vol. 1, pp. 225–250, Academic Press, New York.Google Scholar
  40. Lawlor, R. B., Trivedi, M. D., and Yelnosky, J., 1969, A determination of the anorexigenic potential of dl-amphetamine, d-amphetamine, l-amphetamine and phentermine, Arch. Int. Pharmacodyn. Ther. 179:401–407.PubMedGoogle Scholar
  41. McCarty, F. J., Tilford, C. H., and Van Campen, M. G., Jr., 1957, Central stimulants. α,α-disubstituted 2-piperidine methanols and 1,1-disubstituted heptahydro-oxazolo (3,4-α) pyridines, J. Am. Chem. Soc. 79:472–480.CrossRefGoogle Scholar
  42. Møller-Nielsen, I., and Dubnick, B., 1970, Pharmacology of chlorphentermine, in Amphetamines and Related Compounds (E. Costa and S. Garattini, eds.), pp. 63–73, Raven Press, New York.Google Scholar
  43. Moore, K. E., 1963, Toxicity and catecholamine releasing activities of d-and l-amphetamine in isolated and aggregated mice, J. Pharmacol. Exp. Ther. 142:6–12.PubMedGoogle Scholar
  44. Neff, N. H., and Yang, H. Y. T., 1974, Minireview. Another look at the monoamine oxidases and the monoamine oxidase inhibitor drugs, Life Sci. 14:2061–2074.PubMedCrossRefGoogle Scholar
  45. Pletscher, A., Bartholini, G., Bruderer, H., Burkard, W. P., and Gey, K. F., 1964, Chlorinated arylalkylamines affecting the cerebral metabolism of 5-hydroxytryptamine, J. Pharmacol. Exp. Ther. 145:334–350.Google Scholar
  46. Pletscher, A., DaPrada, M., Bartholini, G., Burkard, W. P., and Bruderer, H., 1965, Two types of monoamine liberation by chlorinated aralkylamines, Life Sci. 4:2301–2308.PubMedCrossRefGoogle Scholar
  47. Pletscher, A., DaPrada, M., and Burkard, W. P., 1970, The effect of substituted phenethylamines on the metabolism of biogenic monoamines, in Amphetamines and Related Compounds (E. Costa and S. Garrattini, eds.), pp. 331–341, Raven Press, New York.Google Scholar
  48. Portoghese, P. S., and Malspeis, L., 1961, Relative hydrolysis rates of certain alkyl (dl)-α-(2-piperidyl)-phenylacetates, J. Pharm. Sci. 50:494–501.PubMedCrossRefGoogle Scholar
  49. Portoghese, P. S., Pazdernik, T. L., Kuhn, W. L., Hite, G., and Shafi’ee, A., 1968, Stereochemical studies on medicinal agents. V. Synthesis, configuration, and pharmacological activity of pipradrol enantiomers, J. Med. Chem. 11:12–15.PubMedCrossRefGoogle Scholar
  50. Roth, L. W., Richards, R. K., Shemano, I., and Morphis, B. B., 1954, A comparison of the analeptic, circulatory and other properties of d-and l-desoxyephedrine, Arch. Int. Pharmacodyn. Ther. 98:362–368.PubMedGoogle Scholar
  51. Sanders-Bush, E., and Sulser, F., 1970, p-Chloroamphetamine: in vivo investigations on the mechanism of action of the selective depletion of cerebral serotonin, J. Pharmacol. Exp. Ther. 175:419–426.PubMedGoogle Scholar
  52. Sanders-Bush, E., Bushing, J. A., and Sulser, F., 1972a, p-Chloroamphetamine inhibition of cerebral tryptophan hydroxylase, Biochem. Pharmacol. 21:1501–1510.PubMedCrossRefGoogle Scholar
  53. Sanders-Bush, E., Bushing, J. A., and Sulser, F., 1972b, Long-term effects of p-chloroamphetamine on tryptophan hydroxylase activity and on the levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in brain, Eur. J. Pharmacol. 20:385–388.PubMedCrossRefGoogle Scholar
  54. Sanders-Bush, E., Bushing, J. A., and Sulser, F., 1975, Long-term effects of p-chloroamphetamine and related drugs on central serotonergic mechanisms, J. Pharmacol. Exp. Ther. 192:33–41.PubMedGoogle Scholar
  55. Scholz, K., and Panizzon, L., 1954, Über die Danstellung von Pyridyl und Piperidyl-aryl-acetonitrilen und einigen Umwandlungsprodukten, Helv. Chim. Acta 37:1605–1611.CrossRefGoogle Scholar
  56. Schuster, C. R., Woods, J. H., and Seevers, M. H., 1969, Self-administration of central stimulants by the monkey, in Abuse of Central Stimulants (F. Sjoqvist and M. Tottie, eds.), pp. 339–347, Raven Press, New York.Google Scholar
  57. Shafi’ee, A., and Hite, G., 1969, The absolute configuration of the pheniramines, methylphenidates, and pipradrols, J. Med. Chem. 12:266–270.CrossRefGoogle Scholar
  58. Shafi’ee, A., Marathe, S., Bhatkar, R., and Hite, C., 1967, Absolute configurations of the enantiomeric pheniramines, methylphenidates and pipradrols, J. Pharm. Sci. 56:1689–1690.CrossRefGoogle Scholar
  59. Sheppard, H., Tsien, W. H., Rodegker, W., and Plummer, A. J., 1960, Distribution and elimination of methylphenidate-14C, Toxicol. Appl. Pharmacol. 2:353–362.PubMedCrossRefGoogle Scholar
  60. Shulgin, A. T., Sargent, T., and Naranjo, C., 1969, Structure-activity relationships of one-ring psychotomimetics, Nature 221:537–541.PubMedCrossRefGoogle Scholar
  61. Snyder, S. H., Richelson, E., Weingartner, H., and Faillace, L. A., 1970a, Psychotropic methoxyamphetamines: structure and activity in man, in Amphetamines and Related Compounds (E. Costa and S. Garrattini, eds.), pp. 905–928, Raven Press, New York.Google Scholar
  62. Snyder, S. H., Taylor, K. M., Coyle, J. T., and Meyerhoff, J. L., 1970b, The role of brain dopamine in behavioral regulation and the actions of psychotropic drugs, Am. J. Psychiat. 127:199–207.PubMedGoogle Scholar
  63. Svensson, T. H., 1971, Functional and biochemical effects of d-and l-amphetamine on central catcholamine neurons, Naunyn-Schmiedeberg’s Arch. Pharmakol. 271:170–180.CrossRefGoogle Scholar
  64. Swanson, E. E., Scott, C. C., Lee, H. M., and Chen, K. K., 1943, Comparison of the pressor action of some optical isomers of sympathetic amines, J. Pharmacol. Exp. Ther. 79:329–333.Google Scholar
  65. Taylor, K. M., and Snyder, S. H., 1970, Amphetamine: differentiation by d-and l-isomers of behavior involving brain norepinephrine or dopamine, Science 168:1487–1489.PubMedCrossRefGoogle Scholar
  66. Tilford, C. H., and Van Campen, Jr., M. G., 1954, Diuretics, α,α-disubstituted 2-piperidine-ethanols and 3,3-disubstituted octahydropyrid(1,2-c) oxazines, J. Am. Chem. Soc. 76:2431–2441.CrossRefGoogle Scholar
  67. Van der Schoot, J. B., Ariens, E. J., Van Rossum, J. M., and Hurkmans, J. A., 1961, Phenylisopropylamine derivatives, structure and action, Arzneim.-Forschung 9:902–907.Google Scholar
  68. Van Rossum, J. M., 1970, Mode of action of psychomotor stimulant drugs, Int. Rev. Neurobiol. 12:309–383.Google Scholar
  69. Wilson, M. C., and Schuster, C. R., 1973, The effects of stimulants and depressants on cocaine self-administration behavior in the rhesus monkey, Psychopharmacologia 31:291–304.PubMedCrossRefGoogle Scholar
  70. Wilson, M. C., Hitomi, M., and Schuster, C. R., 1969, Further studies of the self-administration of psychomotor stimulants in the rhesus monkey, Committee on Problems of Drug Dependence (NAS/NRC), pp. 6057-6063.Google Scholar
  71. Wilson, M. C., Hitomi, M., and Schuster, C. R., 1971, Psychomotor stimulant self-administration as a function of dosage per inejetion in the rhesus monkey, Psychopharmacologia 22:271–281.PubMedCrossRefGoogle Scholar
  72. Winthrop, S. O., and Humber, L. G., 1961, Central stimulants. Cyclized diphenylisopropylamines, J. Org. Chem. 26:2834–2836.CrossRefGoogle Scholar
  73. Wong, D. T., Horng, S. J., and Fuller, R. W., 1973, Kinetics of serotonin accumulation into synaptosomes of rat brain: effects of amphetamine and chloroamphetamine, Biochem. Pharmacol. 22:311–322.PubMedCrossRefGoogle Scholar
  74. Yanagita, T., Ando, K., Takahashi, S., and Ishida, K., 1969, Self-administration of barbiturates, alcohol (intragastric) and CNS stimulants (intravenous) in monkeys, Committee on Problems of Drug Dependence (NAS/NRC), pp. 6039-6051.Google Scholar
  75. Yanagita, T., Ando, K., and Takahashi, S., 1970, A testing method for psychological dependence liability of drugs in monkeys, Committee on Problems of Drug Dependence (NAS/NRC), pp. 6583-6591.Google Scholar
  76. Yokel, R. A., and Pickens, R., 1973, Self-administration of optical isomers of amphetamine and methamphetamine by rats, J. Pharmacol. Exp. Ther. 187:27–33.PubMedGoogle Scholar
  77. Zirkle, C. L., and Kaiser, C., 1964, Monoamine oxidase inhibitors (nonhydrazines), in Psychopharmacological Agents (M. Gordon, ed.), Vol. 1, pp. 445–554, Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • J. H. Biel
    • 1
  • B. A. Bopp
    • 2
  1. 1.Aldrich Chemical Company, Inc.MilwaukeeUSA
  2. 2.Abbott LaboratoriesNorth ChicagoUSA

Personalised recommendations