Advertisement

Differential-Geometric Methods in the Calculus of Variations

  • N. I. Kabanov
Part of the Progress in Mathematics book series (PM, volume 12)

Abstract

The so-called metric theories, based on the concept of a metric, occupy an important place in differential geometry. Most of all the giving of these metrics can be looked upon as the giving of functionals of various variational problems on appropriate spaces, which leads to the interconnection of differential geometry and the calculus of variations. From this connection differential geometry obtains the possibility of the development of new theories and of the posing of new problems, while the application of intrinsic geometrical methods in the calculus of variations, in addition to clarifying the essence of the results by means of a geometrical interpretation, can prove to be useful for the creation of new research methods.

Keywords

Variational Problem Geometric Theory Finsler Space Fiber Space Finsler Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    V. I. Bliznikas, “Finsler spaces and their generalizations,” (in press).Google Scholar
  2. 2.
    V. V. Vagner, “Geometry of the field of central plane curves in X3,” Dokl. Akad. Nauk SSSR, 48:382–384 (1945).MATHGoogle Scholar
  3. 3.
    V. V. Vagner, “Homological transformation of a Finsler metric,” Dokl. Akad. Nauk SSSR, 46:263–265 (1945).MATHGoogle Scholar
  4. 4.
    V. V. Vagner, “Geometry of the field of local central plane curves in X3 and the simplest case of the Lagrange problem in the calculus of variations,” Dokl. Akad. Nauk SSSR, 48:229–232 (1945).MATHGoogle Scholar
  5. 5.
    V. V. Vagner, “A sufficient condition in the Lagrange problem for multiple integrals,” Dokl, Akad. Nauk SSSR, 54:479–482 (1946).MATHGoogle Scholar
  6. 6.
    V. V. Vagner, “Geometric interpretation of extremal surface in the Lagrange problem for multiple integrals,” Dokl. Akad. Nauk SSSR, 55:87–90 (1947).MathSciNetGoogle Scholar
  7. 7.
    V. V. Vagner, “Geometry of an n-dimensional space with an m-dimensional Riemannian metric and its application to the calculus of variations,” Mat. Sb., 20(62):3–26 (1947).MathSciNetGoogle Scholar
  8. 8.
    V. V. Vagner, “Geometric theory of the simplest n-dimensional singular problem of the calculus of variations,” Mat. Sb., 21(63):321–364 (1947).MathSciNetGoogle Scholar
  9. 9.
    V. V. Vagner, “Theory of the field of local curves and local conical surfaces in X3 and its applications to the calculus of variations and to the theory of partial differential equations,” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 6, 257–364 (1948).MathSciNetGoogle Scholar
  10. 10.
    V. V. Vagner, “Finsler geometry as a theory of the field of local hypersurfaces in Xn,” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 7, 65–166 (1949).MathSciNetGoogle Scholar
  11. 11.
    V. V. Vagner, “Theory of the field of local hyperstrips,” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 8, 197–272 (1950).MathSciNetGoogle Scholar
  12. 12.
    V. V. Vagner, “Theory of composite manifolds,” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 8, 11–72 (1950).MathSciNetGoogle Scholar
  13. 13.
    V. V. Vagner, “Geometry of a space with a hyperareal metric as a theory of the field of local hypersurfaces in a composite manifold,” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 8, 144–196 (1950).MathSciNetGoogle Scholar
  14. 14.
    V. V. Vagner, “Geometry of a space with an areal metric and its applications to the calculus of variations,” Mat. Sb., 19(61):341–406 (1946).Google Scholar
  15. 15.
    V. V. Vagner, “Differential-geometric methods in the calculus of variations,” Uch. Zap. Kazansk. Univ., 115(10):4–7 (1955).Google Scholar
  16. 16.
    V. V. Vagner, “The calculus of variations as the theory of the field of central semicones,” Nauchn. Ezhegodnik. Saratovsk. Univ., Mekh.-Mat. Fak., 1955, Saratov, 1959, pp. 27–34.Google Scholar
  17. 17.
    M. V. Vasil’eva, “The geometry of an integral,” Mat. Sb., 36(1):57–92 (1955).MathSciNetGoogle Scholar
  18. 18.
    M. V. Vasil’eva, “Invariant description of the Cartan geometry of an integral,” Uch. Zap. Mosk. Gos. Ped. Inst. im. V. I. Lenina, No. 208, 76–85 (1963).Google Scholar
  19. 19.
    Ch’ao-hao Ku and Buchin Su, “First and second variations of a multiple integral in a space with a multiple areal metric,” Shusyue Syuebao, 2(4):231–245 (1953).Google Scholar
  20. 20.
    L. E. Evtushik, “On the geometry of a double integral,” Mat. Sb., 37 (1):197–208 (1955).MathSciNetGoogle Scholar
  21. 21.
    L. E. Evtushik, “The geometry of the integral F(x, xn ,xn, xnß)[dx1.., dxn-1] ” Nauchn. Dokl. Vysshch. Shkoly, Fiz.-Mat. Nauk, No. 6, 114–118 (1958).Google Scholar
  22. 22.
    L. E. Evtushik, “The Lie derivative and the differential field equations of a geometrical object,” Dokl. Akad. Nauk SSSR, 132(5):998–100l (1960).Google Scholar
  23. 23.
    Yu. I. Ermakov, “Three-dimensional space with cubic semimetric,” Dokl. Akad. Nauk SSSR, 118(6):1070–1073 (1958).MathSciNetMATHGoogle Scholar
  24. 24.
    Yu. I. Ermakov, “Spaces Xn with an algebraic metric and semimetric,” Dokl. Akad. Nauk SSSR, 128(3):460–463 (1959).MathSciNetMATHGoogle Scholar
  25. 25.
    G. I. Zhotikov, “The Lagrange variational problem specified in intrinsic fashion,” Tr. Fiz.-Mat. Fak. Kirgizsk. Gos. Univ., No. 3, 36–49 (1956).Google Scholar
  26. 26.
    G. I. Zhotikov, “On the theory of the field of local conical surfaces in a firstorder tangent composite manifold En (Xn). I,” Izv. Vysshch. Uchebn. Zavedenii, Matematika, No. 3, 53–64 (1959).Google Scholar
  27. 27.
    G. I. Zhotikov, “On the theory of the field of local conical surfaces in a firstorder tangent composite manifold En (Xn). II,” Izv. Vysshch. Uchebn. Zavedenii, Matematika, No. 4, 64–69 (1959).Google Scholar
  28. 28.
    G. I. Zhotikov, “On the theory of the field of local surfaces in a first-order tangent composite manifold En(Xn),” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 11, 189–218 (1961).Google Scholar
  29. 29.
    G. I. Zhotikov, “Differential singular Finsler metric, definable in Xn by a field of local singular hypersurfaces of singularity class n-m-1,” Uch. Zap. Bashkirsk. Univ., No. 20, 32–45 (1965).Google Scholar
  30. 30.
    G. I. Zhotikov, “Differential Lagrangian (m + 1)-metric, definable in Xn by a field of local m-surfaces,” Uch. Zap. Bashkirstk. Univ., No. 20, 9–31 (1965).Google Scholar
  31. 31.
    G. I. Zhotikov, “Geometric theory of the Lagrange variational problem for multiple integrals,” Uch. Zap. Bashkirsk. Univ., No. 31, 19–66 (1968).Google Scholar
  32. 32.
    G. I. Zhotikov, “Regular variational problem on an unconditional extremum for multiple integrals,” Uch. Zap. Bashkirsk. Univ., No. 31, 67–84 (1968).Google Scholar
  33. 33.
    G. I. Zhotikov, “Geometry of Xn with an m-dimensional Riemannian metric and its applications to the calculus of variations for multiple integrals,” Uch. Zap. Bashkirsk. Univ., No. 31, 85–109 (1968).Google Scholar
  34. 34.
    G. I. Zhotikov, “Introduction to the geometry of the calculus of variations for multiple integrals,” Uch. Zap. Bashkirst. Univ., No. 31, 3–18 (1968).Google Scholar
  35. 35.
    G. I. Zhotikov, ;Certain aspects of the geometric theory of Carathéodory transformations in the calculus of variations for multiple integrals and a sufficient condition for an extremum in the Lagrange problem Uch. Zap. Bashkirsk. Univ., No. 31, 110–214 (1968).Google Scholar
  36. 36.
    N. I. Kabanov, “Cartan space, defined to within Carathéodory transformations,” Uch. Zap. Bashkirstk. Gos. Ped. Inst., 3:47–77 (1958).Google Scholar
  37. 37.
    N. I. Kabanov, “Geometric theory of the Carathéodory transformations in the Lagrange problem,” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 11, 219–240 (1961).MathSciNetGoogle Scholar
  38. 38.
    N. I. Kabanov, “Singular Finsler space, defined correctly within Carathéodory transformations,” Sibirsk. Mat. Zh., 2(5):655–671 (1961).MathSciNetMATHGoogle Scholar
  39. 39.
    N. I. Kabanov, “On the geometric theory of the simplest singular variational problem for an (n-1)-fold integral,” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 12, 239–268 (1963).MathSciNetGoogle Scholar
  40. 40.
    N. I. Kabanov, “Geometry of a singular variational problem for an (n-1)-foid integral,” Report Abstracts Second All-Union Geom. Conf. Kharkov, Sept. 17–23, 1964 [in Russian], Kharkov (1964), pp. 98–99.Google Scholar
  41. 41.
    N. I. Kabanov, “On the geometric theory of the Carathéodory transformations in the simplest singular variational problem for an (n-1)-fold integral,” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 14, 174–199 (1968).MathSciNetGoogle Scholar
  42. 42.
    A. Kawaguchi, “An n-dimensional space with a connection depending on mdimensional flat elements,” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 5, 290–300 (1941).Google Scholar
  43. 43.
    S. A. Kaganov, “Geometry of a space with a singular hyperareal metric,” Mat. Sb., 42(4):497–512 (1957).MathSciNetGoogle Scholar
  44. 44.
    A. E. Liber, “Two-dimensional spaces with an algebraic metric,” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 9, 319–350 (1952).MathSciNetGoogle Scholar
  45. 45.
    M. V. Losik, “A certain class of Kawaguchi spaces,” Dokl. Akad. Nauk SSSR, 134(6):1299–1302 (1960).Google Scholar
  46. 46.
    M. V. Losik, “Klein spaces as Kawaguchi spaces,” Dokl. Akad. Nauk SSSR, 139(6):1299–1301 (1961).MathSciNetGoogle Scholar
  47. 47.
    M. V. Losik, “Geometric interpretation of certain conditions in an ordinary variational problem with higher derivatives,” Sibirsk. Mat. Zh., 2(4):556–566 (1961).MathSciNetMATHGoogle Scholar
  48. 48.
    M. V. Losik, “Kawaguchi spaces related with Klein spaces,” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 12, 213–237 (1963).MathSciNetGoogle Scholar
  49. 49.
    M. V. Losik, “Infinitesimal connections in tangent fiber spaces,” Izv. Vysshch. Uchebn. Zavedenii, Matematika, No. 5, 54–60 (1964).MathSciNetGoogle Scholar
  50. 50.
    A. I. Pershin, “On the geometric theory of a singular Lagrange variational problem in X4,” Investigations on Integro-Differential Equations at Kirgiz, No. 2 [in Russian], Akad. Nauk Kirg.SSR, Frunze (1962), pp. 335–342.Google Scholar
  51. 51.
    A. I. Pershin, “On the geometric theory of the Radon case of a singular Lagrange variational problem in X4,” Izv. Vysshch. Uchebn. Zavedenii, Matematika, No. 5, 95–99 (1964).Google Scholar
  52. 52.
    A. I. Pershin, “Geometric theory of the Carathéodory transformations of a singular Lagrange variational problem in X4,” Tr. Molodykh Uchenykh Saratovsk. Univ., Vyp. Mat., Saratov (1964), pp. 73–87.Google Scholar
  53. 53.
    N. F. Rzhekhina, “On the theory of the field of local curves in Xn,” Dokl. Akad. Nauk SSSR, 72:461–464 (1950).MATHGoogle Scholar
  54. 54.
    N. F. Rzhekhina, “Theory of the field of local hypertorses in Xn,” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 9, 411–430 (1952).Google Scholar
  55. 55.
    Pen-wang Sun, “Equivalence problem for the integral F(x, y, y’.... y(n))dx. ” Shyusyue Syuebao, 4(2):223–224 (1954).Google Scholar
  56. 56.
    P. I. Tokarev, “Geometric theory of the second variation in the Lagrange variational problem,” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 9, 431–455 (1952).MathSciNetGoogle Scholar
  57. 57.
    I. V. Frolova, “On the theory of the field of local rigged m-cones in En (Xn),” Uch. Zap. Bashkirsk. Univ., No. 31, 303–315 (1968).MathSciNetGoogle Scholar
  58. 58.
    É. I. Khmielevskii, “Application of the Lie derivative to seeking extremals in spaces of hyperflat elements,” Sb. Aspirantsk. Rabot. Kazansk. Univ., Mat., Mekh., Fiz., Kazan (1964), pp. 94–96.Google Scholar
  59. 59.
    É. I. Khmielevskii, “Invariant form of the second variation of an (n-l)-fold integral, obtained by Lie differentiation in Cartan space,” Sb. Aspirantsk. Rabot. Kazansk. Univ., Mat., Mekh., Fiz., Kazan (1964), pp. 61–68.Google Scholar
  60. 60.
    S. M. Chashechnikov, “Theory of the field of local hypercones,” Dokl. Akad. NaukSSSR, 117:765–768 (1957).Google Scholar
  61. 61.
    D. E. Chernyi, “Geometry of the Lagrange variational problem with a double integral in X4,” Izv. Vysshch. Uchbn. Zavedenii, Matematika, No. 4, 153–165 (1964).Google Scholar
  62. 62.
    D. E. Chernyi, “Geometric theory of the differential invariants of the Lagrange problem with a double integral in the space X4,” Tr. Molodykh Uchenykh Saratovsk. Univ., Vyp. Mat., Saratov (1964), pp. 108–119.Google Scholar
  63. 63.
    D. E. Chernyi, “A sufficient condition in the Lagrange problem with higher-order derivatives,” Volzhsk. Mat. Sb., No. 5, 374–379 (1966).Google Scholar
  64. 64.
    D. E. Chernyi, “Geometric theory of a singular variational problem with a double integral in the space X4,” Volzhsk. Mat. Sb., No. 3, 332–338 (1965).Google Scholar
  65. 65.
    D. E. Chernyi, “Geometry of 1-cutting and semiconical 2-cutting surfaces in the fiber space M4 + (2 4) and its applications to the calculus of variations,” Tr. Seminara Vectorn. Tenzorn. Analizu, No. 14, 200–228 (1968).Google Scholar
  66. 66.
    F. Alardin, L’autoparallélisme des courbes extrémales dans les espaces métriques fondés sur la notion d’aire. J. Math. pures appl., 27:255–336 (1948).MathSciNetMATHGoogle Scholar
  67. 67.
    C. B. Barker, The Lagrange multiplier rule for two dependent and two independent variables. Amer. Journ., Mathem., 67:256–276 (1945).MathSciNetMATHGoogle Scholar
  68. 68.
    W. Barthel, Über das Verhältnis der Vectorübertragung zu den Variations-problemen in Cartanschen Räumen. Rend. Circolo mat. Palermo, 3(2):270–281 (1954).MathSciNetMATHGoogle Scholar
  69. 69.
    W. Barthel, Über homogene Funktionen auf dem Grassman-Kegel. Arch. Math., 9:262–274 (1958).MathSciNetMATHGoogle Scholar
  70. 70.
    W. Barthel, Über metrische Differentialgeometrie, begründet auf dem Begriff eines p-dimensionalen Areals. Math. Ann., 137(1):42–63 (1959).MathSciNetMATHGoogle Scholar
  71. 71.
    L. Berwald, Über die n-dimensionale Cartanschen Räume und eine Normalform der zweiten eines (n-1)-fachen Oberflächenintegrale. Acta Math., 71:191–198 (1939).MathSciNetGoogle Scholar
  72. 72.
    L. Berwals, Über Finslersche und Cartansche Geometrie. II. Invarianten bei der Variation vielfacher Integral und Parallelhyperflächen in Cartanschen Räumen. Comp. Math., 7:141–176 (1939).Google Scholar
  73. 73.
    W. Bettingen, Zum Satz von Gauss-Bonnet in der dreidimensionalen metrischen Differentialgeometrie. Rend. Circolo mat Palermo, 9(3):347–359 (1960).Google Scholar
  74. 74.
    W. Blaschke, Über die Figuratrix in der Variationsrechnung. Arch. Math. Phys., 3(20):28–44 (1912).Google Scholar
  75. 75.
    F. Brickell, On the existence of metric differential geometries based on the notion of area. Proc. Cambridge. Phil. Soc., 46:67–72 (1950).MathSciNetMATHGoogle Scholar
  76. 76.
    F. Brickell, On areal spaces. Tensor, 13:19–30 (1963).MathSciNetMATHGoogle Scholar
  77. 77.
    C. Carathéodory, Über die diskontinuierlichen Lösungen in der Variationsrechnung, Dissertation, Göttingen (1904), 71 pp.Google Scholar
  78. 78.
    E. Cartan, “Les espaces métriques fondés sur la notion d’aire,” Acualites scientifiques et industrielles 72, Hermann, Paris (1933).Google Scholar
  79. 79.
    E. Cartan, La geometrie de l’integrale F(x, v, y’, y”)dx. J. Math. pures, appl., 15:42–69 (1936).MATHGoogle Scholar
  80. 80.
    E. T. Davies, Areal spaces. Ann. Mat. pura ed appl., 55:63–76 (1961).MATHGoogle Scholar
  81. 81.
    E. T. Davies, On the use of osculating spaces. Tensor, 14:86–98 (1963).MathSciNetMATHGoogle Scholar
  82. 82.
    R. Debever, “Sur une classe d’espaces a connexion euclidienne,” Dissertation, Brussels (1947).MATHGoogle Scholar
  83. 83.
    R. Debever, “Sur une structure infinitésimale régulière associée aux integrales d’hypersurfaces de calcul de variations,” Convegno internationale di geometria differenziale, Italy, 1953, ed. Cremonese, Rome (1954), pp. 214–221.Google Scholar
  84. 84.
    P. Dedecker, “Calcul des variations formes differentielle et champs géodésiques,” Colloq: internat. centre nat. rech. scient. Strasbourg 52, Paris (1953), pp. 17–34.Google Scholar
  85. 85.
    A. Deicke, Über die Finsler-Räume met Ai = 0. Arch. Math., 4(1):45–51 (1953).MathSciNetMATHGoogle Scholar
  86. 86.
    M. Gama, On areal spaces of the submetric class. I. II. III. Tensor 16(3):262–268 (1965); 16(3):291–293 (1965)MathSciNetGoogle Scholar
  87. 87.
    S. Hokari, Die Geometrie des Integrals (aiajx“i x”j +2baix’’i+c) p dt. Proc. Acad. Tokyo, 12:209–212 (1936).MathSciNetGoogle Scholar
  88. 88.
    S. Hokari, Die Theorie des Kawaguchischen Raumes mit der Massbestimmung von einer bestimmten Gestalt. J. Fac. Sci Hokkaido Univ., Ser. I. Math., 8:63–78 (1940).MathSciNetGoogle Scholar
  89. 89.
    H. Hombu, Geometrie des Integrals (Ly’+M)dx. Proc. Imp. Acad., Tokyo, 12:159–161 (1936).MathSciNetGoogle Scholar
  90. 90.
    S. Ide, On the theory of curves in n-dimensional space with the metrics 1 s= (Ai(x, x’)xi +B)P I. II. Tensor, 9:25–29 (1949)MathSciNetGoogle Scholar
  91. 91.
    S. Ide, On the connections in higher order spaces. Tensor, 3:84–90 (1954).MathSciNetMATHGoogle Scholar
  92. 92.
    S. Ide, On the connections in higher order spaces. II. Tensor, 4(3):l35–140 (1955).MathSciNetMATHGoogle Scholar
  93. 93.
    S. Ide, On the Wirtinger’s connections in higher order spaces. J. Fac. Sci. Hokkaido Univ., Ser. I, 13:75–119 (1956).MathSciNetMATHGoogle Scholar
  94. 94.
    S. Ide, On the geometrical meanings of Wirtinger’s connections based on Kawaguchi’s. Tensor, 14:216–218 (1963).MathSciNetMATHGoogle Scholar
  95. 95.
    H. Iwamoto, Über eine geometrische Theorie der mehrfachen Integrale. Japan. J. Math., 19:479–512 (1948).MathSciNetGoogle Scholar
  96. 96.
    H. Iwamoto, On geometries associated with multiple integrals. Math. Japonicae, 1:74–91 (1948).MathSciNetMATHGoogle Scholar
  97. 97.
    H. Iwamoto, On the geometry in a space based on the notion of area. I., Tensor, 9:7–12 (1949).MathSciNetGoogle Scholar
  98. 98.
    C. Kano, Conformal geometry in an n-dimensional space with the arc length 1 s= (Ai(x, x’)xi +B(x, x’))1/p dt. Tensor, 5(3):187–196 (1956).MathSciNetMATHGoogle Scholar
  99. 99.
    C. Kano, Conformal geometry in an n-dimensional space with the arc length s = (Ai(x, x’)x”i +B(x, x’)) 1/p dt. II. Tensor, 10(3):210–217 (1960).MathSciNetMATHGoogle Scholar
  100. 100.
    Y. Katsurada, On the theory of curves in a higher order space with some special metrics. Tensor, 7:58–64 (1944).MathSciNetGoogle Scholar
  101. 101.
    A. Kawaguchi, Theory of connections in the generalized Finsler manifold. Proc. Imp. Acad. Tokyo, 7:211–214 (1937).MathSciNetGoogle Scholar
  102. 102.
    A. Kawaguchi, Die Differentialgeometrie in der verallgemeinerten Mannigfaltigkeit. Rend. Circolo mat. Palermo, 56:245–276 (1932).Google Scholar
  103. 103.
    A. Kawaguchi, Ein metrischer Raum, der eine Verallgemeinerung des Finslerschen Raumes ist. J. Math. und Phys., 43:289–297 (1936).MathSciNetGoogle Scholar
  104. 104.
    A. Kawaguchi, Theory of connections in a Kawaguchi space of higher order. Proc. Imp. Acad. Tokyo, 13:237–240 (1937).MathSciNetGoogle Scholar
  105. 105.
    A. Kawaguchi, Geometry in an n-dimensional space with the arc length s = (Ai(x, x’)xi+B(x, x’))1/P dt. Trans. Amer. Math. Soc., 44:153–167 (1938).MathSciNetGoogle Scholar
  106. 106.
    A. Kawaguchi, On areal spaces. I. II. III. Tensor, 14–45 (1950): 1:67–88 (1951)Google Scholar
  107. 107.
    A. Kawaguchi, On the theory of non-linear connections. II. Theory of Minkowski space and of non-linear connections in a Finsler space. Tensor, 6(3):165–199 (1956).MathSciNetMATHGoogle Scholar
  108. 108.
    A. Kawaguchi, On the theory of areal spaces. Bull. Calcutta Math. Soc., 56(2–3): 91–104 (1964).MathSciNetMATHGoogle Scholar
  109. 109.
    A. Kawaguchi and S. Hokari, Grundlegung der Geometrie der n-dimensionalen metrischen Räume auf Grund des Begriffs des k-dimensionalen Flächeninhalts. Proc. Imp. Acad. Tokyo, 16:320–325 (1940).MathSciNetGoogle Scholar
  110. 110.
    A. Kawaguchi and K. Tandai, On areal spaces. V. Normalized metric tensor and connection parameters in a space of the submetric class. Tensor, 2:47–58 (1952).MathSciNetMATHGoogle Scholar
  111. 111.
    S. Kawaguchi, On some properties of projective curvature tensor in a special Kawaguchi space. Tensor, 13:83–88 (1963).MathSciNetMATHGoogle Scholar
  112. 112.
    S. Kawaguchi, On a special Kawaguchi space of recurrent curvature. Tensor, 15(2):145–158 (1964).MathSciNetMATHGoogle Scholar
  113. 113.
    S. Kawaguchi and T. Nobuhara, On extremal curves in a special Kawaguchi space. Tensor, 5(3):197–200 (1956).MathSciNetMATHGoogle Scholar
  114. 114.
    D. Laugwitz, Eine Beziehung zwischen affiner und Minkowskischer Differentialgeometrie. Publs Math., 5(1–2):72–76 (1957).MathSciNetGoogle Scholar
  115. 115.
    T. Michihiro, Theory of curves in a two-dimensional space with arc-length s= (AiXi +B) 1/p dt ,Tensor, 4:63–66 (1944).MathSciNetGoogle Scholar
  116. 116.
    A. Moór, Über die Dualität von Finslerschen und Cartanschen Räumen. Acta Math., 88:347–370 (1952).MathSciNetMATHGoogle Scholar
  117. 117.
    A. Moór, Ergänzungen zu meiner Arbeit: “Über die Dualität von Finslerschen und Cartanschen Räumen.”, Acta Math., 91(3–4):187–188 (1954).MathSciNetMATHGoogle Scholar
  118. 118.
    A. Moór, Die osculierenden Riemannschen Räume regulärer Cartanscher Räume. Acta Math. Acad. sci hung., 5(1–2):59–72 (1954).MATHGoogle Scholar
  119. 119.
    M. Okumura, On some remarks of special Kawaguchi spaces. Tensor, 11(2):154–160 (1961).MathSciNetMATHGoogle Scholar
  120. 120.
    G. Reeb, “Sur les espaces de Finsler et les espaces de Cartan,” Colloq. internat. centre nat. rech. scient. Strasbourg 52, Paris (1953), pp. 35–40Google Scholar
  121. 121.
    H. Rund, Über nicht-holonome allgemeine metrische Geometrie. Math. Nachr., 11(1–2):61–80 (1954).MathSciNetMATHGoogle Scholar
  122. 122.
    H. Rund, The Differential Geometry of Finsler Spaces, Springer, Berlin (1959), Vol. 8, p. 283.Google Scholar
  123. 123.
    N. K. Sharma and R. Behari, Some properties of spaces with the arc-length s= (Ai(xi, xi)xi)1/3 dt. Ganita, 15 (1):1–8 (1964).MathSciNetMATHGoogle Scholar
  124. 124.
    T. N. Srivastava, Generalized Bianchi and Veblen identities in a special Kawaguchi space. Tensor, 15(2):87–102 (1964).MathSciNetMATHGoogle Scholar
  125. 125.
    T. N. Srivastava, Les identités généralisées de Bianchi et de Veblen dans les espaces de Kawaguchi spéciaux. C. r. Acad. sci., 254(15):2706–2708 (1962).MATHGoogle Scholar
  126. 126.
    T. N. Srivastava, A few remarks on special Kawaguchi spaces. Tensor, 15(1): 12–19 (1964).MathSciNetMATHGoogle Scholar
  127. 127.
    T. N. Srivastava and R. S. Mishra, Bianchi identies in special Kawaguchi space. Tensor, 11(1):43–50 (1961).MathSciNetMATHGoogle Scholar
  128. 128.
    Buchin Su, Koschmieder invariant and the associate differential equation of minimal hypersurface in a regular Cartan space. Math. Nachr., 16(2):117–129 (1957).MathSciNetGoogle Scholar
  129. 129.
    Buchin Su, On the theory of affine connections in an areal space. Bull. Math. Soc. sci. math. et phys. RPR, 2(2):185–190 (1958).Google Scholar
  130. 130.
    Buchin Su, The geometry of spaces with areal metrics. Math. Nachr., 16(5–6): ‘281–287 (1957).MathSciNetMATHGoogle Scholar
  131. 131.
    Buchin Su, On the determination of certain affine connections in an areal space. Sci. Rec, 1(4):195–198 (1957).MATHGoogle Scholar
  132. 132.
    Buchin Su, Certain affinely connected spaces with areal metrics. Scientia Sinica, 6:967–975 (1957).MathSciNetMATHGoogle Scholar
  133. 133.
    J. L. Synge, Some intrinsic and derived vectors in a Kawaguchi space. Amer. J. Math., 57:679–691 (1935).MathSciNetGoogle Scholar
  134. 134.
    K. Tandai, On areal spaces VI. On the characterization of metric areal spaces. Tensor, 3(1):40–45 (1953).MathSciNetMATHGoogle Scholar
  135. 135.
    K. Tandai, On areal spaces. VII. The theory of the canonical connection an m-dimensional subspaces. Tensor, 4(2):78–90 (1954).MathSciNetMATHGoogle Scholar
  136. 136.
    K. Tandai, On general connections in an areal space. II. General Connections on the tangent m-frame bundle. Tensor, 19:26–46 (1963).MathSciNetGoogle Scholar
  137. 137.
    K. Tandai, On general connections in an areal space. I. General connection on a fibre of the tangent m-frame bundle. Tensor, 13:277–291 (1963).MathSciNetMATHGoogle Scholar
  138. 138.
    K. Tandai, On areal space. VIII. Theory of a space of the semi-metric class. Tensor, 10:161–166 (1960).MathSciNetMATHGoogle Scholar
  139. 139.
    Y. Tashiro, A theory of transformation groups on generalized spaces and its application to Finsler and Cartan spaces. J. Math. Soc. Japan, 11(1):42–71 (1959).MathSciNetMATHGoogle Scholar
  140. 140.
    K. Tonooka, On the geometry of an (n-1)-ple integral of order two. Tensor, 1:53–59 (1951).MathSciNetGoogle Scholar
  141. 141.
    K. Tonooka, Theory of subspaces in a geometry based on a multiple integral I. Metric tensor and theory of connections. Tensor, 3:75–83 (1954).MathSciNetMATHGoogle Scholar
  142. 142.
    K. Tonooka, On a geometry of three-dimensional space with an algebraic metric. Tensor, 6 (1):60–68 (1956).MathSciNetMATHGoogle Scholar
  143. 143.
    K. Tonooka, On three and four dimensional Finsler spaces with the fundamental formy 3aaßx’ax’ßx’. Tensor, 9(3):209–216 (1959).MathSciNetMATHGoogle Scholar
  144. 144.
    O. Varga, Die Krümmung der Eichfläche der Minkowskischen Raumes und die geometrische Deutung des eigen Krümmungtensors des Finslerschen Raumes. Abhandl. Math. Seminar Univ. Hamburg, 20(1–2):41–51 (1955).MATHGoogle Scholar
  145. 145.
    O. Varga, Eine Charakterisierung der Kawaguchischen Räume metrischer Klasse mittels eines Satzes über derivierte Matrizen. Publs. math., 4(3–4):418–430 (1956).MATHGoogle Scholar
  146. 146.
    V. V. Vagner [Wagner], Theory of a field of local (n-2)-dimensional surfaces in Xn and its application to the problem of Lagrange in the calculus of variations. Ann. Math., 49:141–188 (1948).Google Scholar
  147. 147.
    V. V. Vagner [Wagner], Geometria del calcolo delle variazioni, Vol. II, Centro Internationale Matematico estivo (CEME), Ed. Cremonese, Rome (1965), 172 pp.Google Scholar
  148. 148.
    S. Watanabe, On special Kawaguchi spaces. Tensor, 7(2):130–136 (1957).MathSciNetMATHGoogle Scholar
  149. 149.
    S. Watanabe, On special Kawaguchi spaces. II. A generalizations of affine Spaces. Tensor, 8(3):169–176 (1958).MathSciNetMATHGoogle Scholar
  150. 150.
    S. Watanabe, On special Kawaguchi spaces. III. Generalizations of affine spaces and Finsler spaces. Tensor, 11(2):144–153 (1961).MATHGoogle Scholar
  151. 151.
    S. Watanabe, On special Kawaguchi spaces. IV. Extremal curves in the generalized affine spaces. Tensor, 11(3):254–262 (1961).MathSciNetGoogle Scholar
  152. 152.
    S. Watanabe, On special Kawaguchi spaces. V. Some remarks on the special Kawaguchi spaces. Tensor, 11(3):279–284 (1961).MathSciNetGoogle Scholar
  153. 153.
    S. Watanabe, On special Kawaguchi spaces. VI. Some transformations in certain special Kawaguchi spaces. Tensor, 12(3):244–253 (1962).MathSciNetMATHGoogle Scholar
  154. 154.
    S. Watanabe and M. Yoshida, On special Kawaguchi spaces. VII. Some transformations in certain special Kawaguchi spaces II. Tensor, 13:31–41 (1963).MathSciNetMATHGoogle Scholar
  155. 155.
    A. Winternitz, Über die affine Grundlage der Metrik eines Variationsproblems. S.-B. preuss. Akad. Wiss., 26:457–469 (1930).Google Scholar
  156. 156.
    M. Yoshida, On the connections in a subspace of the special Kawaguchi space. Tensor, 17 (1):49–52 (1966).MathSciNetMATHGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • N. I. Kabanov

There are no affiliations available

Personalised recommendations