Advertisement

Integral Geometry

  • G. I. Drinfel’d
Part of the Progress in Mathematics book series (PM, volume 12)

Abstract

This survey is devoted to papers in the area of integral geometry published during the last ten years.

Keywords

Invariant Measure Convex Body Constant Curvature Uniform Space Convex Polyhedron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    S. A. Demidova, “Application of the theory of integral invariants of Lie groups to certain aspects of integral geometry,” Dissertation, Kharkov (1956).Google Scholar
  2. 2.
    G. I. Drinfel’d, “On measure in Lie groups,” Khar’kov. Gos. Univ. Uch. Zap., 29 (1949)Google Scholar
  3. 3.
    G. I. Drinfel’d, “Some basic formulas of integral geometry. II,” Khar’kov. Gos. Univ. Univ. Uch. Zap., 40 (1952)Google Scholar
  4. 4.
    G. I. Drinfel’d, “Theory of integral invariants and integral geometry,” Proc. Third Ail-Union Math. Congress, Vol. I [in Russian], Akad. Nauk SSSR, Moscow (1956), p. 151.Google Scholar
  5. 5.
    G. I. Drinfel’d, “Computation of an affine arc and of an affine area,” Ukr. Geometr. Sb., (1968).Google Scholar
  6. 6.
    G. I. Drinfel’d and Kyong Kim, “Integral invariants of completely integrable Pfaffian systems of differential equations,” Dopovidi Akad. Nauk Ukrain.RSR, No. 6, 713–716 (1963).Google Scholar
  7. 7.
    G. I. Drinfel’d and A. V. Lutsenko, “The measure of the set of second-order curves,” Dopovidi Akad. Nauk Ukrain.RSR, No. 1, 14–17 (1965).Google Scholar
  8. 8.
    Kyong Kim, “Integral invariants of a completely integrable system of equations in terms of total differentials,” Vestnik Khar’kov. Gos. Univ., Ser. Mekh.-Mat., No. 3, 51–64 (1965).Google Scholar
  9. 9.
    A. V. Lutsenko, “The measure of sets of geometric elements and of their subsets,” Ukr. Geometr. Sb., No. 1, 39–57 (1965).MATHGoogle Scholar
  10. 10.
    Yu. G. Reshetnyak, “Integral-geometric methods in the theory of curves,” Proc. Third AU-Union Math. Congress, Vol. I [in Russian], Akad. Nauk SSSR, Moscow (1956), p. 164.Google Scholar
  11. 11.
    L. Santaló, Introduction to Integral Geometry [Russian translation], Izd. Inostr. Lit., Moscow (1956), 183 pp.Google Scholar
  12. 12.
    M. Stoka, “The measure of families of manifolds in the space E3,” Rev. Math. Pures et Appl. (RPR), 4(2):305–316 (1959).MathSciNetMATHGoogle Scholar
  13. 13.
    E. G. Ushakova, “Conditions for the existence of an integral invariant of a transitive group,” Khar’kov. Gos. Univ. Uch. Zap., 115 (1961)Google Scholar
  14. 14.
    N. G. Chebotarev, “The determination of volume in Lie groups,” Zap. Mat. Otd. Fiz.-Mat. Fak. i Khar’kov. Mat. Obshch., 14:3–20 (1937),Google Scholar
  15. 15.
    N. G. Cebotarev, Lie Groups [in Russian], Moscow-Leningrad (1940).Google Scholar
  16. 16.
    L. M. Yurtova and A. V. Lutsenko, “Measures of sets of pairs,” Ukr. Geometr. Sb., (1968).Google Scholar
  17. 17.
    I. M. Yaglom, “Integral geometry in the set of line elements,” Appendix to the book: L. Santaló, Introduction to Integral Geometry [Russian translation], Izd. Inostr. Lit., Moscow (1956), 183 pp.Google Scholar
  18. 18.
    R. E. Alemany, Valores numericos de ciertas constantes relacionadas con volumenes mixtos de cuerpos convexos. Rev. Union mat. argent. y Asoc. fis. argent., 21(3):113–118 (1963).MathSciNetMATHGoogle Scholar
  19. 19.
    A. S. Besicovitch, “On the set of directions of linear segments on a convex surface,” in: Convexity, Amer. Math. Soc. (1963), pp. 24–25.Google Scholar
  20. 20.
    W. Blaschke, Vorlesungen über Integralgeometrie, 3 ed., VEB Dtsch. Verl. Wiss. (1955), Vol. 8, 130 pp.Google Scholar
  21. 21.
    G. Bouligand, Sur les transformations ponctuelles conservant lesaires. Gaz. mat., 14(56):1–4 (1953).MathSciNetMATHGoogle Scholar
  22. 22.
    J. E. Brothers, “Integral geometry in homogeneous spaces,” Doctoral dissertation, Brown Univ. (1964), 87 pp.; Dissert. Abstr., 25(8):4717–4718 (1965).Google Scholar
  23. 23.
    J. E. Brothers, Integral geometry in homogeneous spaces. Trans. Amer. Math. Soc., 124(3):480–517 (1966).MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    H. Busemann, Areas in affine spaces. III. The integral geometry of affine area. Rend. Circolo mat. Palermo, 9(2):226–240 (1960).MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    G. Chakerian, Integral geometry in the Minkowski plane. Duke math. J., 29(3): 375–381 (1962).MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Shiing-shenChern, On integral geometry in the Klein spaces. Ann. math., 43: 178–189 (1942).CrossRefGoogle Scholar
  27. 27.
    Shiing-shen Chern, Differential Geometry and Integral Geometry, Proc. Internat. Congr. Mathematicians, 1958. Cambridge Univ. Press, Mass. (1960), pp.440–449.Google Scholar
  28. 28.
    Shiing-shen Chern, On the kinematic formula in integral geometry. J. Math. and Mech., 16(1):101–118 (1966).MathSciNetMATHGoogle Scholar
  29. 29.
    V. Cruceanu, Asupra transformårilor infinitezimale ale unui spatiu Riemann cu pstrarea volumului. Studii i cercetri tiin. Acad. RPR. Fil. Iai Mat., 9(2): 181–188 (1958).MathSciNetGoogle Scholar
  30. 30.
    R. Deltheil, Probabilités géometriques, Paris, (1926), Traité du calcul des probabil. et de ses applic, tome II, fasc. II.Google Scholar
  31. 31.
    I. Fáry, Functionals related to mixed volumes. Illinois J. Math., 5(3):425–430 (1961).MathSciNetMATHGoogle Scholar
  32. 32.
    H. Federer, Curvature measures. Trans. Amer. Math. Soc., 93(5):418–491 (1959).MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    W. J. Firey, Generalized convex bodies of revolution.Canad.J. Math., 19(5): 972–996 (1967).MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    F. Gaeta, Algunas observaciones sobre la realiracion efectiva del programa de Chern geometria integral. Math. notae., 17(1–2):1–29 (1959).MathSciNetMATHGoogle Scholar
  35. 35.
    F. Gaeta, Sobre un proceso de linearizacion aplicable en problemas de geometria integral. Publs Fac. cienc, fisicomat. Univ. nac. La Plata, No. 224, pp. 17–32 (1960).MathSciNetGoogle Scholar
  36. 36.
    F. Gaeta, Sobre la subordinacion de la geometria integral a la teoria de la representacion de grupos mediante transformaciones lineales. Contribs. cient. Univ. Buenos Aires. Fac. cienc. exactas y natur. Mat., 2(2):27–87 (1960).Google Scholar
  37. 37.
    H. Giger, Ermittlung der mittleren Masszahlen von Partikeln eines Körpersystems durch Messungen auf dem Rand eines Schnittbereichs. Z. angew. Math. und Phys., 18(6):883–888 (1967).MATHCrossRefGoogle Scholar
  38. 38.
    H. Hadwiger, Über additive Funktionale k-dimensionaler Eipolyeder. Publs. mathematical, 3(1–2):87–94 (1953).MathSciNetGoogle Scholar
  39. 39.
    H. Hadwiger, Zur kinematischen Hauptformel der integralgeometrie. Proc. Internat. Congr. Math., Amsterdam, 2:225–226 (1954).Google Scholar
  40. 40.
    H. Hadwiger, Altes und Neues über konvexe Körper, Birkhäuser, Basel (1955), 116 pp.Google Scholar
  41. 41.
    H. Hadwiger, Minkowskis Ungleichungen und nichtconvexe Rotationskörper. Math. Nachr., 14(4–6):377–383 (1955).MathSciNetCrossRefGoogle Scholar
  42. 42.
    H. Hadwiger, Körper im euklidischen Raum und ihre topologischen und metrischen Eigenschaften. Math. Z., 71(2):124–140 (1959).MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    H. Hadwiger, Über konkave und konvexe Eikörperscharen. Publs. math. Debrecan, Nos. 1–2, pp. 97–101 (1957).MathSciNetGoogle Scholar
  44. 44.
    H. Hadwiger, Zur Axiomatik der innermathematischen Wahrscheinlichkeitstheorie. Mitt. Verein. Schweiz. Versicherungsmathematiker, 58(2):151–165 (1958).MathSciNetMATHGoogle Scholar
  45. 45.
    H. Hadwiger, Geometrische Wahrscheinlichkeiten bei Durchstichen von Geraden durch Kugelflächen. Mitt. Verein. Schweiz. Versicherungsmathematiker, 68(1): 27–35 (1968).MathSciNetMATHGoogle Scholar
  46. 46.
    R. Hermann, Remarks on the foundations of integral geometry. Rend. Circolo mat. Palermo, 2(9):91–96 (1960).MathSciNetCrossRefGoogle Scholar
  47. 47.
    Chuan-Chih Hsiung and J. K. Shahin, Affine differential geometry of closed hypersurfaces. Proc. London Math. Soc., 17(4):715–735 (1967).MathSciNetCrossRefGoogle Scholar
  48. 48.
    K. Legrady, Symplektische Integralgeometrie. Ann. mat. pura ed appl., 41:139–159 (1956).MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    R. E. Luccioni, Sobre la existencia de medida para hipercuadricas singulares en espacios projéctivos. Rev. Univ. nac. Tucumán, A14(1–2):269–276 (1962).MathSciNetGoogle Scholar
  50. 50.
    R. E. Luccioni, Geometria integral en espacios projéctivos. Rev. Univ. nac. Tucumán, A15(1–2):53–80 (1964).MathSciNetGoogle Scholar
  51. 51.
    R. E. Luccioni, Sobre la existencia de medida para conjuntos de subespacios lineales en espacios afines. Rev. Univ. nac. Tucumán, A16(1–2):219–227 (1966).MathSciNetGoogle Scholar
  52. 52.
    G. Lüko, On the mean length of the chords of a closed curve. Israel J. Math., 4 (1):23–32 (1966).MathSciNetCrossRefGoogle Scholar
  53. 53.
    C. D. Maraval, El problema de la aguja de Buffon en el espacio de n dimensiones. Gac. mat., 11(3–4):74–75 (1959).Google Scholar
  54. 54.
    G. Masotti Biggiogero, La geometria integrale. Rend. Seminar mat. e fis. Milano, 1953–1954; 25:164–231 (1955).CrossRefGoogle Scholar
  55. 55.
    G. Masotti Biggiogero, Sulla geometria integrale: generalizzazione di formule di Crofton, Lebesgue e Santalo. Rev. Union mat. argent. y Asoc fis. argent., 17:125–134 (1955).MathSciNetGoogle Scholar
  56. 56.
    G. Masotti Biggiogero, Sulla geometria integrale: nuove formule relative agli ovaloidi. Scritti mat. onore Filippo Sibirani. Bologna, (1957), pp. 173–179.Google Scholar
  57. 57.
    G. Masotti Biggiogero, Nuove formule di geometria integrale relative agli ovali. Ann. mat. pura ed appl., 58:85–108 (1962).MATHCrossRefGoogle Scholar
  58. 58.
    G. Masotti Biggiogero, Nuove formule di geometria integrale relative agli ovaloidi. Rend. Ist. lombardo sci. e lettere. Sci. mat., fis., chim. e geol, A69(3):666– 685 (1962).Google Scholar
  59. 59.
    M. Masuyama, On a fundamental formula in bulk sampling from the viewpoint of integral geometry. Repts Statist. Applic. Res., Union Japan Scientists and Engrs, 4(3):85–89 (1956).MathSciNetGoogle Scholar
  60. 60.
    H. R. Müller, Über Momente ersten und zweiten Grades in der Integral-geometrie. Rend. Circolo mat. Palermo, 2(1):119–139 (1953).MATHCrossRefGoogle Scholar
  61. 61.
    Z. Nádenik, O Integralni geometri. Pokroky mat., fiz.a astron., 7(2):75–79 (1962).MATHGoogle Scholar
  62. 62.
    A. Novikoff, “Integral geometry as a tool in pattern perception,” in: H. von Foerster and G. W. Zopf, Jr. (Eds.), Principles of Self-Organization, Pergamon Press, Oxford (1962), pp. 347–368.Google Scholar
  63. 63.
    T. Onodera, On hypersurfaces in certain n-dimensional spaces. Tensor, 19(1): 55–63 (1968).MathSciNetMATHGoogle Scholar
  64. 64.
    M. de Resmini, Un ramo relativamente nuevo della matematica: la geometria integrale. Archimede, 13(3):134–144 (1961).MathSciNetMATHGoogle Scholar
  65. 65.
    L. A. Santaló, “On the kinematic formula in spaces of constant curvature,” Proc. Internat. Congr. Math., 1954, Amsterdam (1954), pp. 251–252.Google Scholar
  66. 66.
    L. A. Santaló, “Sur la mesure des espaces linéaires qui coupent un corps convex et problèmes qui s’y rattachent,” Colloq. quest, réalité géom., Liège, 1955, Liège (1956) pp. 177–190.Google Scholar
  67. 67.
    L. A. Santaló, On the mean curvatures of a flattened convex body. Istanbul univ. fen. fac. mecm., A21(3–4):189–194 (1956).Google Scholar
  68. 68.
    L. A. Santaló, Un nuevo invariante afin para las figures convexes del piano y del espacio. Math. notae, 16(3–4):78–97 (1958).MathSciNetMATHGoogle Scholar
  69. 69.
    L. A. Santaló, Two applications of the integral geometry in affine and projective spaces. Publs math. Debrecen, 7(1–4):226–237 (1960).MATHGoogle Scholar
  70. 70.
    L. A. Santaló, La formula de Steiner para superficies paralelas en geometria afin. Rev. Univ. nac. Tucumán, A13(1–2):194–208 (1960).Google Scholar
  71. 71.
    L. A. Santaló, On the measure of sets of parallel linear subspaces in affine space. Canad. J. Math., 14(2):313–319 (1962).MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    L. A. Santaló, Sobre la formula fundamental cinematica de la geometria integral en espacios de curvatura constant. Math. notas, 18 (1):79–94 (1962).Google Scholar
  73. 73.
    L. A. Santaló, “Integral geometry of the projective groups of the plane depending on more than three parameters,” An. stiint, Univ. Iasi, Sec. Ia, 11b:307–335 (1965).Google Scholar
  74. 74.
    L. A. Santaló, Horocycles and convex sets in hyperbolic plane. Arch. Math., 18(5):529–533 (1967).MATHCrossRefGoogle Scholar
  75. 75.
    L. A. Santaló, Grupos del piano respecto de los cuales los conjuntos de puntos y de rectas admiten una medida invariante. Rev. Union mat. argent, y Asoc. fis. argent., 23(3):119–148 (1967).MATHGoogle Scholar
  76. 76.
    M. Stoka, Msura unei multimi de varietâi dintr-un spatiu Rn. Bu1 stint. Acad. R. P. Rumîne. Sec. mat. i fiz., 7(4):903–937 (1955).MathSciNetMATHGoogle Scholar
  77. 77.
    M. Stoka, Asupra msurii mulimii cercurilor din plan. Gaz. mat. i fiz., A7(10): 556–559 (1955).MathSciNetGoogle Scholar
  78. 78.
    M. Stoka, Asupra subgrupurilor unui grup Gr msurabil. Comun. Acad. RPR, 6(3): 393–394 (1956).MathSciNetMATHGoogle Scholar
  79. 79.
    M. Stoka, Asupra grupurilor Gr msurabile din plan. Bul. tiin. Acad. RPR. Sec. mat. i fiz., 9(2):341–380 (1957).MathSciNetMATHGoogle Scholar
  80. 80.
    M. Stoka, Asupra grupurilor Gr msurabile dintr-un spatiu Rn. Comun. Acad. RPR, No. 6, pp. 581–585 (1957).MathSciNetGoogle Scholar
  81. 81.
    M. Stoka, Asupra msurii multimilor de varietâi dintr-un spaiu euclidian En. Comun. Acad. RPR, No. 3, pp. 313–317 (1957). ’MathSciNetGoogle Scholar
  82. 82.
    M. Stoka, Geometria integrale in uno spazio euclideo En. Boll. Unione mat. ital., 13(4):170–485 (1958).MathSciNetGoogle Scholar
  83. 83.
    M. Stoka, Invariantii integrali ad unui grup Lie de Transformri. An. Univ. “C. I. Parchon”. Ser. stiint. natur, No. 20, pp. 33–35 (1958).MathSciNetMATHGoogle Scholar
  84. 84.
    M. Stoka, Asupra grupurilor Gr msurabile dintr-un spatiu En. Comun. Acad. RPR, 9(1):5–10 (1959).MATHGoogle Scholar
  85. 85.
    M. Stoka, Géométrie intégrale dans un espace En. Rev. math. pures et appl., (RPR), 4 (1):123–156 (1959),MathSciNetMATHGoogle Scholar
  86. 86.
    M. Stoka, Congruences de variétés mesurables dans un espace En. Rev. math. pures et appl. (RPR), 4(3):431–439 (1959).MathSciNetMATHGoogle Scholar
  87. 87.
    M. Stoka, Famiglie di varietà misurabili in uno spazio En. Rend. Circolo mat. palermo, 8(2):192–205 (1959).MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    M. Stoka, Integralgeometrie in einem Riemannschen Raum Vn Rev. math. pures et appl. (RPR), 5(1):107–120 (1960).MathSciNetMATHGoogle Scholar
  89. 89.
    M. Stoka, Geometrie integral intr-un spatiu riemannian Vn. Studii i cercetri mat. Acad. RPR. Fil. Cluj. 11(2):381–395 (1960).MathSciNetMATHGoogle Scholar
  90. 90.
    M. Stoka, Das Mass der Untersysteme von Mannigfaltigkeiten in einem Raum Xn. Rev. math. pures et appl. (RPR), 5(2):275–286 (1960).MathSciNetMATHGoogle Scholar
  91. 91.
    M. Stoka, Geometrie integral într-un spatiu euklidian En, Lucrrile conf. geometrie i topol., 1958, Bucuresti, Acad. RPR (1962) pp. 109–116.Google Scholar
  92. 92.
    M. Stoka, Familii de varietti msurabile intr-un spatiu riemannian V3 cu curbura constant negativ. Studii i cercetari mat. Acad. RPR, 14(3):365–376 (1963).MathSciNetMATHGoogle Scholar
  93. 93.
    M. Stoka, Geometria integral, Bucuiesti, Acad. RPR (1967), 238 pp.Google Scholar
  94. 94.
    R. Sulanke, Die Verteilung der Sohnenlängen an ebenen und räumlichen Figuren. Math. Nachr., 23 (1):51–74 (1961).MathSciNetMATHCrossRefGoogle Scholar
  95. 95.
    R. Sulanke, Integralgeometrie ebener Kurvennetze. Acta math. Acad. scient. hung., 17(3–4):233–261 (1966).MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    R. Sulanke, Croftonsche Formeln in Kleinschen Räumen. Math. Nachr., 32(3–4): 217–241 (1966).MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    K. Tekse, Riemann-térz intégralgeometriá jának néhény problémájáról. Magyar tud. acad. Mat. és. fiz. tud. aszt. közl., 11(3):289–304 (1961).MATHGoogle Scholar
  98. 98.
    R. Trandafir, Problems of integral geometry of lattices in an Euclidean space E3. Boll. Unione math. ital., 22(2):228–235 (1967),MathSciNetMATHGoogle Scholar
  99. 99.
    R. Trandafir, Problems of integral geometry of lattices in a riemannian space V2 with constant curvature. Boll. Unione math. ital., 1(2):244–248 (1968).MathSciNetMATHGoogle Scholar
  100. 100.
    S. Ueno, On the densities in a two-dimensional generalized space. Mem. Fac. Sci. Kyûsyû Univ., A9 (1):65–77 (1955).MathSciNetCrossRefGoogle Scholar
  101. 101.
    A. E. Vidal, A generalization of integral invariants. Proc. Amer. Math. Soc., 10(5):721–727 (1959).MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    A. E. Vidal, Generalización de los invariantes integrales y aplicación a la geometria integral en los espacios de Klein y de Riemann. Collect, math., 12(2): 71–102 (1960).MathSciNetMATHGoogle Scholar
  103. 103.
    G. Vrnceanu, The measurability of Lie groups. Ann. polon. math., 15(2):179–188 (1964).MathSciNetGoogle Scholar
  104. 104.
    S. Watanabe, On hypersurfaces of spaces belonging to certain transformation group. Acta math. Acad. scient. hung., 17(1–2):137–145 (1966).MATHCrossRefGoogle Scholar
  105. 105.
    S. Watanabe, On hypersurfaces of spaces belonging to a certain transformation group. II. Tensor, 18 (1):90–96 (1967).MathSciNetMATHGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • G. I. Drinfel’d

There are no affiliations available

Personalised recommendations