Lattice Theory

  • M. M. Glukhov
  • I. V. Stelletskii
  • T. S. Fofanova
Part of the Progress in Mathematics book series (PM, volume 12)


The present survey is devoted to results in the papers on lattice theory reviewed in Referativnyi Zhurnal (Mat.) during 1965–1968, and is a natural continuation of Skornyakov’s survey article [38]. Papers on vector lattices, (partially, lattice) ordered algebraic systems (semi-groups, groups, rings), as well as a large circle of papers on projective geometry, reviewed in the section on “Lattices” but bearing only a slight relation to the main theme of the present article, are not considered here.


Boolean Function Boolean Algebra Distributive Lattice Closure Operator Lattice Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. N. Abramovskii, “Groups in which the subgroup lattices is a relatively complemented lattice,” Algebra Logika. Seminar, 6(1):5–8 (1967).MathSciNetGoogle Scholar
  2. 2.
    A. Ya. Aizenshtat, “Regular endomorphism semigroups of ordered sets,” Uch. Zap. Leningrad. Gos. Ped. Inst. im. A. I. Gertsena, 387:3–11 (1968).Google Scholar
  3. 3.
    S. A. Anishchenko, “Representation of certain modular lattices by subgroup lattices,” Mat. Zap. Krasnoyarsk. Ped. Inst., 1:1–21 (1965).Google Scholar
  4. 4.
    A. F. Bravtsev, “Congruences of the direct product of algebras,” Algebra Logika. Seminar, 6 (1):39–43 (1967).Google Scholar
  5. 5.
    I. I. Valutse, “Some aspects of the theory of unary algebras,” in: Abstracts of the Reports of the Second Scientific Engineering Conference of the Kishniev Polytechnic Institute [in Russian], Kishniev (1966), 229 pp.Google Scholar
  6. 6.
    V. G. Vinokurov, “A lattice method for defining dimension,” Dokl. Akad. Nauk SSSR, 168(3):504–507 (1966).MathSciNetGoogle Scholar
  7. 7.
    L. M. Gluskin, “Semigroups,” in: Algebra. 1964 [in Russian], Science Summaries, VINITI, Akad. Nauk SSSR, Moscow (1966), pp. 161–202.Google Scholar
  8. 8.
    M. M. Glukhov, “Algorithmic solvability of the word problem for completely free modular lattices,” Sibirsk. Mat. Zh., 5(5):1027–1034 (1964).MATHGoogle Scholar
  9. 9.
    E. E. Gurevich and G. Ya. Rotkovich, “Comparison of various definitions of 0-convergence in lattices,” Uch. Zap. Leningrad. Gos. Ped. Inst. im. A. I. Gertsena, 274:52–58 (1968).Google Scholar
  10. 10.
    Kh. M. Devadze, “Generating set of the endomorphism semigroup of a finite linearly ordered set,” Uch. Zap. Leningrad. Gos. Ped. Inst. im. A. I. Gertsena, 387:101–111 (1968).MathSciNetGoogle Scholar
  11. 11.
    A. E. Evseev, “Semigroups with ordinally decomposable semilattices of subsemigroups,” Izv. Vyssh. Uchebn. Zavedenii. Matematika, No. 6, 74–84, (1965).MathSciNetGoogle Scholar
  12. 12.
    A. E. Evseev, “Certain classes of semigroups with ordinally decomposable semilattices of subsemigroups,” Uch. Zap. Leningrad. Gos. Ped. Inst. im. A. I. Gertsena, 302:63–69 (1967).MathSciNetGoogle Scholar
  13. 13.
    A. E. Evseev, “Lattice isomorphisms of free nilpotent semigroups,” Uch. Zap. Leningrad. Gos. Ped. Inst. im. A. I. Gertsena, 387:112–125 (1968).MathSciNetGoogle Scholar
  14. 14.
    A. A. Iskander, “Lattice of correspondences of a universal algebra,” Izv. Akad. Nauk SSSR, Ser. Mat., 29(6):1357–1372 (1965).MathSciNetMATHGoogle Scholar
  15. 15.
    A. A. Iskander, “Partial universal algebras with given subalgebra lattices and correspondences,” Mat. Sb., 70(3):438–456 (1966).MathSciNetGoogle Scholar
  16. 16.
    L. N. Karolinskaya, “Congruence lattices of distributive lattices,” Izv. Akad. Nauk, SSSR, Ser. Mat., 28(5):1037–1054 (1964).MathSciNetGoogle Scholar
  17. 17.
    L. N. Karolinskaya and I. V. Stelletskii, “Congruences on weakly modular lattices,” Sibirsk. Mat. Zh., 7(5):1033–1038 (1966).MATHGoogle Scholar
  18. 18.
    T. Katriìíak, “A remark on Stone lattices. I,” Math.-Fyz. asop., 16(2):128–142 (1966).Google Scholar
  19. 19.
    T. Katrinák, “A remark on Stone lattices. II,” Mat.-Fyz. asop., 17 (1):20–37 (1967).MATHGoogle Scholar
  20. 20.
    S. P. Kogalovskii, “Linearly complete ordered sets,” Uspekhi Mat. Nauk, 19(2): 147–150 (1964).MathSciNetGoogle Scholar
  21. 21.
    S. P. Kogalovskii, “On Frink’s theorem,” Uspekhi Mat. Nauk, 19(2):143–145 (1964).MathSciNetGoogle Scholar
  22. 22.
    P. Constantinescu and T. Gapar, “Number of types of Boolean functions with respect to certain direct products of subgroups of a hyperoctahedral group,” Bull. Math. Soc. Sci. Math. Phys. RPR, 7(3):189–198 (1963).Google Scholar
  23. 23.
    P. G. Kontorovich, S. G. Ivanov, and G. P. Kondrashov, “Distributive pairs of elements in a lattice,” Dokl. Akad. Nauk SSSR, 160(5):1001–1003 (1965).MathSciNetGoogle Scholar
  24. 24.
    I. Korets, “Construction of all partially ordered sets homomorphically mappable onto a given partially ordered set,” Acta Fac. Rerum Natur. Univ. Comenianae, Math., 10(5):23–36 (1966).Google Scholar
  25. 25.
    Z. Ladzianska, “Characterization of a directed partially ordered set by means of a ”betweenness“ relation,” Mat.-Fyz. asop., 15(2):162–167 (1965).MathSciNetMATHGoogle Scholar
  26. 26.
    A. E. Liber, A Binary Boolean Algebra and Its Application [in Russian], Saratov Univ., Saratov (1966), 80 pp.Google Scholar
  27. 27.
    E. S. Lyapin, “Semigroups of directed transformations of ordered sets,” Mat. Sb., 74(1):39–46 (1967).MathSciNetGoogle Scholar
  28. 28.
    E. S. Lyapin, “Types of elements and the zeros of semigroups of directed transformations,” Uch. Zap. Leningrad. Gos. Ped. Inst. im. A. I. Gertsena, 387:171–180 (1968).Google Scholar
  29. 29.
    L. L. Maksimova, “Topological spaces and quasi-ordered sets,” Algebra i Logika. Seminar, 6(4):51–59 (1967).MathSciNetMATHGoogle Scholar
  30. 30.
    B. Makhkamov, “Filters of a distributive lattice,” UzSSR Fanlar Akad. Akhboroti Fiz.-Mat. Fanlari Ser., Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 4, 29–32 (1965).Google Scholar
  31. 31.
    Yu. N. Mukhin, “Locally compact groups with a distributive lattice of closed subgroups,” Sibirsk. Mat. Zh., 8(2):366–375 (1967).Google Scholar
  32. 32.
    B. Riean, “Continuous extension of monotone functionals of a certain type,” Mat.-Fyz. asop., 15(2):116–125 (1965).Google Scholar
  33. 33.
    V. V. Rogov, “Complemented groups,” Mat. Zap. Krasnoyarsk. Ped. Inst., 1:54–58 (1965).Google Scholar
  34. 34.
    S. Rudeanu, “The definition of Boolean algebras by means of binary operations,” Rev. Math. Pures et Appl., 6(1):171–183 (1961).MathSciNetMATHGoogle Scholar
  35. 35.
    S. Rudeanu, “Boolean functions and Sheffer functions,” Rev. Math. Pures et Appl., 6(4):747–759 (1961).MathSciNetMATHGoogle Scholar
  36. 36.
    L. E. Sadovskii, “Certain lattice-theoretic aspects of group theory,” Uspekhi Mat. Nauk, 23(3):123–157 (1968).MathSciNetGoogle Scholar
  37. 37.
    V. N. Salii, “Lower lattices,” Reports Third Siberian Conf. Math. Mech. 1964 [in Russian], Tomsk Univ., Tomsk (1964), pp. 237–238.Google Scholar
  38. 38.
    L. A. Skornyakov, “Lattice theory,” in: Algebra. 1964 [in Russian], Science Summaries, VINITI, Akad. Naúk SSSR, Moscow (1966), pp. 237–274.Google Scholar
  39. 39.
    A. M. Skryago, “The ideals of the endomorphism semigroup of one type of partially ordered sets,” Nauchn. Tr. Krasnodarsk. Gos. Ped. Inst., No. 41, 9–10 (1965).Google Scholar
  40. 40.
    M. A. Taitslin, “The elementary theories of lattices of ideals in polynomial rings,” Algebra i Logika. Seminar, 7(2):94–97 (1968).Google Scholar
  41. 41.
    V. V. Fedorchuk, “Ordered sets and the product of topological spaces,” Vestn. Mosk. Univ., Mat., Mekh., No. 4, 66–71 (1966).Google Scholar
  42. 42.
    V. V. Fedorchuk, “Ordered spaces,” Dokl. Akad. Nauk SSSR, 169(4):777–780 (1966).MathSciNetGoogle Scholar
  43. 43.
    N. D. Filippov, “Projection of lattices,” Mat. Sb., 70(1):36–54 (1966).MathSciNetGoogle Scholar
  44. 44.
    P. A. Freidman, “Rings with a distributive lattice of subrings,” Mat. Sb., 73(4): 513–534 (1967).MathSciNetGoogle Scholar
  45. 45.
    N. G. Hisamiev, “Unsolvability of an elementary theory of a free lattice,” Algebra i Logika. Seminar, 6(5):45–48 (1967).MathSciNetMATHGoogle Scholar
  46. 46.
    N. G. Hismiev, “Several remarks on distributive lattices,” Algebra i Logika. Seminar, 6(4):107–110 (1967).Google Scholar
  47. 47.
    L. K. Chebotareva, “The belonging problem for free and almost free lattices,” Sibirsk. Mat. Zh., 8(2):399–405 (1967).Google Scholar
  48. 48.
    L. N. Shevrin, “Fundamental question in the theory of projection of semilattices,” Mat. Sb., 66(4):568–597 (1967).Google Scholar
  49. 49.
    L. N. Shevrin, “Lattice isomorphisms of commutative holoidal semigroups,” Izv. Vyssh. Uchebn. Zavedenii. Matematika, No. 1, 153–160 (1966).Google Scholar
  50. 50.
    L. N. Shevrin, “Elementary lattice properties of semigroups,” Dokl. Akad. Nauk SSSR, 167(2):305–308 (1966).MathSciNetGoogle Scholar
  51. 51.
    L. N. Shevrin, “Fundamental questions in the theory of projection of semilattices. II,” Mat. Zap. Ural.skii Univ., 5(3):107–122 (1966).MATHGoogle Scholar
  52. 52.
    L. N. Shevrin, “Semi-isomorphisms and lattice isomorphisms of semigroups with a cancellation law,” Dokl. Akad. Nauk SSSR, 171(2):296–298 (1966).MathSciNetGoogle Scholar
  53. 53.
    M. F. Shirokhov, “Decomposition sequences of a Boolean algebra,” An. Stiint. Univ.Iasi, Sec. Ia, 11B:75–87 (1965).Google Scholar
  54. 54.
    S. L. Ederman,“Certain properties of intervals in a lattice,” Mat. Zap. Krasnoyarsk. Ped. Inst 1:69–75 (1965).Google Scholar
  55. 55.
    I. M. Yaglom, “Boolean algebras,” in: Certain Aspects of Modern Mathematics and Cybernetics [in Russian], Prosveshchenie, Moscow (1965), pp. 230–324.Google Scholar
  56. 56.
    B. V. Yakovlev, “Lattice isomorphisms of metabelian groups of degree P,” Mat. Zap. Krasnoyarsk. Ped. Inst 1:59–68 (1965).Google Scholar
  57. 57.
    B. V. Yakovlev, “Lattice isomorphisms of periodic nilpotent groups,” Mat. Zap. Ural’skii Univ., 5(1):106–116 (1965).MathSciNetMATHGoogle Scholar
  58. 58.
    J. C. Abbott, “Remarks on an algebraic structure for a topology,” General Topology and Related Modern Analysis and Algebra, Vol. 2, Prague, (1967), pp. 17–21.Google Scholar
  59. 59.
    J. C. Abbott, Semi-boolean algebra. Mat. Vesn., 4(2):177–198 (1967).MathSciNetGoogle Scholar
  60. 60.
    A. Abian, The Stone space of a Boolean ring. Enseign. math., 11(2–3):194–198 (1965).MathSciNetMATHGoogle Scholar
  61. 61.
    A. Abian and D. Deever, Representation of partially and simply ordered sets by terminating sequences. Boll. Unione mat. ital., 21(4):371–376 (1966).MATHGoogle Scholar
  62. 62.
    A. Abian and D. Deever, On representation of partially ordered sets. Math. Z., 92(5):353–355 (1966).MathSciNetMATHGoogle Scholar
  63. 63.
    A. Abian and D. Deever, On the minimal length of sequences representing simply ordered set. Z. math. Logik und Grundl. Math., 13 (1):21–23 (1967).MathSciNetMATHGoogle Scholar
  64. 64.
    A. Abian and D. Deever, Representation of simply ordered sets and the generalized continuum hypothesis. Roczn. Polsk. towarz. mat., Ser. 1, 11(1):183–188 (1967).MathSciNetMATHGoogle Scholar
  65. 65.
    A. Abian and D. Deever, On the bounds of the minimal length of sequences representing simply ordered sets. Arch. math. Logik und Grundlagenforsch., s. a., Nos. 1–2, pp. 3–5 (1968).Google Scholar
  66. 66.
    A. Abian and D. Deever, On representation of partially ordered sets. Math. Ann., 169(2):328–330 (1967).MathSciNetMATHGoogle Scholar
  67. 67.
    S. A. Adelfio, Jr. and C. F. Nolan, Principles and applications of Boolean algebra. New York, Hayden (1964), ix, 319 pp.Google Scholar
  68. 68.
    D. Adnadevi, Opredstavljunjukonanich delimino uzedenih skupova. Mat. Vesn., 3(1):17–21 (1966).Google Scholar
  69. 69.
    P. Albada, Axiomatique des algebres de Boole. Bull. Soc. Math. Belg., 18:260–272 (1966).MathSciNetMATHGoogle Scholar
  70. 70.
    R. A. Alo and O. Frink, Topologies of lattice products. Canad. J. Math., 18(5): 1004–1014 (1966).MathSciNetMATHGoogle Scholar
  71. 71.
    L. R. Alvarez, Undirected graphs realizable as graphs of modular lattices. Canad. J. Math., 17(6):923–932 (1965).MathSciNetMATHGoogle Scholar
  72. 72.
    G. Andreoli, Algoritmi booleani subordinati ad algoritmi numerici conversi. Algebre di Frobenius-Boole. Ricerca, 14:3–9 (Jan.-Apr., 1963).Google Scholar
  73. 73.
    G. Andreoli, Algebre booleane con operazioni quasi-lineari, e loro interpretazione con matrici booleane. Giorn. mat. Battaglini, 91(1):5–23 (1963).MathSciNetGoogle Scholar
  74. 74.
    B. Artmann, Automorphismen und Koordinaten bei ebenen Verbänden. Mitt. Math. sem. Giessen, No. 66 (1965), 58 pp.MathSciNetGoogle Scholar
  75. 75.
    B. Artmann, Ein Struktursatz für ebene Verbände. Arch. Math., 18(1):23–32 (1967).MathSciNetMATHGoogle Scholar
  76. 76.
    B. Artmann, Bemerkungen zu einem verbandstheoretischen Problem von Skornjakov. Arch. Math., 18(3):226–229 (1967).MathSciNetMATHGoogle Scholar
  77. 77.
    R. Ascoli and G. Teppati, A lattice theoretical analogue of the Schur lemma. Boll. Unione mat. ital., 22(2):200–204 (1967).MathSciNetMATHGoogle Scholar
  78. 78.
    K. Atsumi, On complete lattices having the Hausdorff interval topology. Proc. Amer. Math. Soc., 17(1):197–199 (1966).MathSciNetMATHGoogle Scholar
  79. 79.
    S. P. Avann, Application of the joinirreducible excess function to semimodular lattices. Math. Ann., 142(4):345–354 (1961).MathSciNetMATHGoogle Scholar
  80. 80.
    S. P. Avann, Increases in the join-excess function in a lattice. Math. Ann., 154(5):420–426 (1964).MathSciNetMATHGoogle Scholar
  81. 81.
    S. P. Avann, Dependence of finiteness conditions in distributive lattices. Math. Z., 85(3):245–256 (1964).MathSciNetMATHGoogle Scholar
  82. 82.
    J. Badida, O asociativnej operacii na uritej triede sväzov. Acta Fac. rerum. natur. Univ. Comenianae. Math., 9(2):71–74 (1964).MathSciNetMATHGoogle Scholar
  83. 83.
    J. Badida, O asociativnej operacii na triede szäzov 0. Acta Fac. rerum natur. Univ. Comenianae. Math., 10(5):37–41 (1966).MathSciNetMATHGoogle Scholar
  84. 84.
    J. Badida, O asociativnych operáciach na uritých triedach sväsov. Acta Fac. rerum natur. Univ. Comenianae. Math., 10(7):31–41 (1966).MathSciNetMATHGoogle Scholar
  85. 85.
    R. Balbes, Projective and injective distributive lattices. Pacif. J. Math., 21(3): 405–420 (1967).MathSciNetMATHGoogle Scholar
  86. 86.
    86; R. Balbes and A. Horn, Order sums of distributive lattices. Pacif. J. Math., 21(3): 421–435 (1967).MathSciNetMATHGoogle Scholar
  87. 87.
    B. Banaschewski, Regular closure operators. Arch. Math., 14(4–5):271–274 (1963).MathSciNetMATHGoogle Scholar
  88. 88.
    B. Banaschewski and G. Bruns, Categorical characterization of the MacNeille completion. Arch. Math., 18(4):369–377 (1967).MathSciNetMATHGoogle Scholar
  89. 89.
    C. Bnic and O. Stnsil, Spectrul unei latici. Studii i certri mat. Acad. RSR, 19(1):137–145 (1967).Google Scholar
  90. 90.
    D. W. Barnes, Lattice isomorphisms of associative algebras. J. Austral Math. Soc., 6(1):106–121 (1966).MathSciNetMATHGoogle Scholar
  91. 91.
    D. L. Barnett, A condition for a ring to be Boolean. Amer. Math. Monthly, 74(1, Part I):44–45 (1967).MathSciNetMATHGoogle Scholar
  92. 92.
    F. Bartolozíi, Immersione di un reticolo distributivo’ finito nel reticolo degli interi rispetto alla divisione. Boli. Unione mat. ital., 21(2):178–185 (1966).Google Scholar
  93. 93.
    A. Bassi, Sui polinomi in un’algebra del Boole con topologia. Atti Accad. naz. Lincei. Rend. Cl. sci. fis., mat. e natur., 40 (1):29–34 (1966).MathSciNetMATHGoogle Scholar
  94. 94.
    A. Bassi, Polinomi e dualitá in un’algebra del Boole con topologia. Rend. mat. e applic, 25(1–2):94–112 (1967).MathSciNetGoogle Scholar
  95. 95.
    F.-W. Bauer, Der Homotopietyp und der Verband der zulässigen Untergruppen. Math. Ann., 164(4):336–343 (1966).MathSciNetMATHGoogle Scholar
  96. 96.
    K. Baumgartner, Skalarbereich und Unterraumverband eines Vektorraumes. Math. Z., 93(1):60–68 (1966).MathSciNetMATHGoogle Scholar
  97. 97.
    A. R. Bednarek, On the Mickle-Rado covering theorems. Fundam. math., 53(1): 93–97 (1963).MathSciNetMATHGoogle Scholar
  98. 98.
    A. R. Bednarek, On chain-equivalent orders. Nieuw arch, wiskunde, 12(3):137–138 (1964).MathSciNetMATHGoogle Scholar
  99. 99.
    N. D. Belnap and J. H. Spencer, Intensionally complemented distributive lattices. Portug. Math., 25(1–2):99–104 (1966).MathSciNetMATHGoogle Scholar
  100. 100.
    M. Benado, Remarques sur la théorie des multitreillis. VI. (Contributions a la théorie des structures algébriques ordonnées). Mat.-fyz. asop., 14(3):163–207 (1964).MathSciNetMATHGoogle Scholar
  101. 101.
    S. Benedetto, Isomorfismi tra reticoli di sottogruppi e reticoli di sottogruppi normali. Atti. Ist. veneto sci. lettere ed arti. Cl. sci. mat. e natur., 123:227–235 (1965).Google Scholar
  102. 102.
    C. Benzaken, Définition et propriétés de certaines families de fonctions booléennes croissantes. C. r. Acad. sci., 259(7):1369–1371 (1964).MathSciNetMATHGoogle Scholar
  103. 103.
    C. Benzaken, Treillis série-paralléle. C. r. Acad. sci., 260(21):5431–5434(1965).MathSciNetMATHGoogle Scholar
  104. 104.
    C. Benzaken, Les families de fonctions booléennes déduites de certaines families de fonctions booléennes croissantes. Critères de détermination de l’indice d’une function croissante. C. r. Acad. sci., 260(6):1528–1531 (1965).MathSciNetMATHGoogle Scholar
  105. 105.
    C. Benzaken, Pseudo-treillis distributifs et applications. Note I. Pseudo-treillis distributifs. Bul. Inst. politehn. Iai, 12(3–4):13–18 (1966).MathSciNetGoogle Scholar
  106. 106.
    M. P. Berri, The complement of a topology for some topological groups. Fundam. math., 58(2):159–162 (1966).MathSciNetMATHGoogle Scholar
  107. 107.
    H. J. Biesterfeldt, Jr., Uniformization of convergence spaces. Part 1. Definitions and fundamental constructions. Math. Ann., 177(1):31–42 (1968).MathSciNetMATHGoogle Scholar
  108. 108.
    T. S. Blyth, A-distributive Boolean matrices. Proc. Glasgow Math. Assoc., 7(2): 93–100 (1965).MathSciNetMATHGoogle Scholar
  109. 109.
    M.-P. Brameret, Treillis d’idéaux et structure d’anneaux. Sémin. Dubreil et Pisot. Fac. Sci. Paris, 16(1):1/01–1/12 (1967).Google Scholar
  110. 110.
    L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation. Canad. J. Math., 19(4):810–822 (1967).MathSciNetMATHGoogle Scholar
  111. 111.
    D. R. Brown, Topological semilattices on the two-cell. Pacif. J. Math., 15(1): 35–46 (1965).MATHGoogle Scholar
  112. 112.
    G. Bruns, Ideal-representations of Stone lattices. Duke Math. J., 32(3):555–556 (1965).MathSciNetGoogle Scholar
  113. 113.
    G. Bruns, A lemma on directed sets and chains. Arch. Math., 18(6):561–563 (1967).MathSciNetMATHGoogle Scholar
  114. 114.
    R. J. Bumcrot, “A comparative study of betweenness relations in lattices,” Doctoral dissertation, Univ. of Missouri (1962), 111 pp.; Dissert. Abstr., 23(8): 2921–2922 (1963).MathSciNetGoogle Scholar
  115. 115.
    R. J. Bumcrot, Betweenness geometry in lattices. Rend. Circolo mat. Palermo, 13 (1):11–28 (1964).MathSciNetGoogle Scholar
  116. 116.
    R. J. Bumcrot, On lattice complements. Proc. Glasgow. Math. Assoc, 7(1):22–23 (1965).MathSciNetMATHGoogle Scholar
  117. 117.
    M. C. R. Butler, A class of torsion-free abelian groups of finite rank. Proc. London Math. Soc., 15(4):680–698 (1965).MathSciNetMATHGoogle Scholar
  118. 118.
    J. J. Carruth, A note on partially ordered compacts. Pacif. J. Math., 24(2):229–231 (1968).MathSciNetMATHGoogle Scholar
  119. 119.
    M. Carvallo, Monographie des treillis et algèbre de Boole, Gauthier-Villars, Paris (1966), 130 pp. (second edition).Google Scholar
  120. 120.
    G. Casanova, L’algébre de Boole, Press. Univ. France, Paris (1967), 128 pp.MATHGoogle Scholar
  121. 121.
    A. C. Choudhury, Application of lattice theory to geometry. Math. Student, 33(1):23–26 (1965).MathSciNetMATHGoogle Scholar
  122. 122.
    A. Climescu, Msuri numerica cu un numr finit de valori in algebrele Boole. Bul. Inst. politehn. Iai, 9(1–2):1–6 (1963).Google Scholar
  123. 123.
    J. L. V. Cordoba, Limite inductivo generalizado de conjuntos. Rev. mat. hisp.amer., 25(4–5):202–206 (1965).MathSciNetMATHGoogle Scholar
  124. 124.
    N. C. A. da Costa, Opérations non monotones dans les treillis. C. r. Acad. sci., 263(14):A429–A432 (1966).Google Scholar
  125. 125.
    H. H. Crapo, The Möbius function of a lattice. J. Combin. Theory, l (1):126–131 (1966).MathSciNetGoogle Scholar
  126. 126.
    H. H. Crapo, Structure theory for geometric lattices. Rend. Semin. mat. Univ. Padova, 38:14–22 (1967).MathSciNetMATHGoogle Scholar
  127. 127.
    M. Curzio, Elementi U-quasi-distributivi in alcuni reticoli di gruppi.Ricerche mat., 13(1):70–79 (1964).MathSciNetMATHGoogle Scholar
  128. 128.
    M. Curzio, Sui gruppi per cui sono riducibili alcuni reticoli di sottogruppi notevoli-Matematiche, 19(1):1–10 (1964).MathSciNetMATHGoogle Scholar
  129. 129.
    M. Curzio, Una caratterizzazione reticolare dei gruppi abeliani. Rend. mat. e applic, 24(1–2):1–10 (1965).MathSciNetMATHGoogle Scholar
  130. 130.
    M. Curzio and M. Giordano, Una proprieta reticolare di alcuni p-gruppi localmente finiti. Mathematiche, 21(1):18–22 (1966).MathSciNetMATHGoogle Scholar
  131. 131.
    A. Daigneault, On automorphisms of polyadic algebras. Trans. Amer. Math. Soc., 12(1):84–130 (1964).MathSciNetGoogle Scholar
  132. 132.
    A. Daigneault, Freedom in polyadic algebras and two theorems of Beth and Craig. Michigan. Math. J., 11(2):129–135 (1964).MathSciNetMATHGoogle Scholar
  133. 133.
    R. O. Davies, The least extension of a closure operator on a sublattice. Proc. Cambridge Philos. Soc., 63(1):9–10 (1967).MathSciNetMATHGoogle Scholar
  134. 134.
    G. W. Day, Free complete extensions of Boolean algebras. Pacif. J. Math., 15(4): 1145–1151 (1965).MATHGoogle Scholar
  135. 135.
    G. W. Day, Superatomic Boolean algebras. Pacif. J. Math., 23(3):479–489 (1967).MATHGoogle Scholar
  136. 136.
    R. A. Dean and R. L. Kruse, A normality relation for lattices. J. Algebra, 3(3): 277–290 (1966).MathSciNetMATHGoogle Scholar
  137. 137.
    J. E. Delany, “Meet representations in upper continuous modular lattices,” Doctoral dissertation, Iowa State Univ. Sci. and Technol. (1966), 61 pp.; Dissert. Abstr.. B27(4):1213 (1966).Google Scholar
  138. 138.
    R. E. Demarr, Common fixed points for isotone mappings. Colloq. math., 13(1): 45–48 (1964).MathSciNetMATHGoogle Scholar
  139. 139.
    R. E. Demarr, Partially ordered spaces and metric spaces. Amer. Math. Monthly, 72(6):628–631 (1965).MathSciNetMATHGoogle Scholar
  140. 140.
    R. E. Demarr, Order convergence and topological convergence. Proc. Amer. Math. Soc., 16(4):588–590 (1965).MathSciNetMATHGoogle Scholar
  141. 141.
    J.-C. Derdérin, Residuated mappings. Pacif. J. Math., 20 (1):35–43 (1967).Google Scholar
  142. 142.
    R. Diaconescu, Sume directe in categoria laticilor. Studii i cercetri mat. Acad. RSR, 19(6):817–824 (1967).MathSciNetMATHGoogle Scholar
  143. 143.
    A. Diego and A. Suárez, Two sets of axioms for Boolean algebras. Portug. math., 23(3–4):139–145 (1964).MATHGoogle Scholar
  144. 144.
    V. Dlab, General algebraic dependence structures and some applications. Colloq. math., 14:265–273 (1964).MathSciNetGoogle Scholar
  145. 145.
    H. P. Doctor, The categories of Boolean lattices, Boolean rings and Boolean spaces. Canad. Math. Bull., 7(2):245–252 (1964).MathSciNetMATHGoogle Scholar
  146. 146.
    T. Donnellan, Lattice Theory, Pergamon Press, Oxford (1968), 283 pp.Google Scholar
  147. 147.
    C. H. Dowker and D. Papert, Quotient frames and subspaces. Proc. London Math. Soc., 16(2):275–296 (1966).MathSciNetMATHGoogle Scholar
  148. 148.
    C. H. Dowker and D. Papert, “On Urysohn’s lemma,” General Topology and Related Modern Analyses and Algebra, Vol. 2, Prague (1967), pp. 111–114.Google Scholar
  149. 149.
    D. Drake, “On the representations of an abstract lattice as the family of closed sets of a topological space,” Doctoral dissertation, Univ. Colorado (1964), 69 pp.; Dissert. Abstr., 25(10):5955–5956 (1965).Google Scholar
  150. 150.
    D. Drake and W. J. Throm, On the representations of an abstract lattice as the family of closed sets of a topological space. Trans. Amer. Math. Soc., 120(1): 57–71 (1965).MathSciNetMATHGoogle Scholar
  151. 151.
    H. Draškoviová, Über die Relation “zwischen” in Verbänden. Mat.-fyz. asop., 16(1):13–20 (1966).Google Scholar
  152. 152.
    R. Duda, On stems. Colloq. math., 15(2):253–261 (1966).MathSciNetMATHGoogle Scholar
  153. 153.
    P. Dwinger, Introduction to Boolean Algebras, Würzburg, Physica-Verl. (1961), 61 pp.MATHGoogle Scholar
  154. 154.
    P. Dwinger, The dual space of the inverse limit of an inverse limit system of Boolean algebras. Proc. koninkl. nederl. akad. wet., A67(2):164–172 (1964): Indagationes math., 26(2):164–172 (1964).MathSciNetGoogle Scholar
  155. 155.
    P. Dwinger, Notes on Post algebras. I. Proc. Koninkl. nederl. akad. wet., A69(4): 462–468 (1966): Indagationes math., 28(4):462–468 (1966).MathSciNetGoogle Scholar
  156. 156.
    P. Dwinger, Notes on Post algebras. II. Proc. Koninkl. nederl. akad. wet., A69(4): 469–478 (1966): Indagationes math., 28(4):469–478 (1966).Google Scholar
  157. 157.
    P. Dwinger, Direct limits of partially ordered systems of Boolean algebras. Proc. Koninkl. nederl. akad. wet., A70(3):317–325 (1967): Indagationes math., 29(2): 317–325 (1967).MathSciNetGoogle Scholar
  158. 158.
    P. Dwinger and F. M. Yaqub, Free extensions of sets of Boolean algebras. Proc. Koninkl. nederl. akad. wet., A67(5):567–577 (1964): Indagationes math., 26(5): 567–577 (1964).MathSciNetGoogle Scholar
  159. 159.
    P. Eligio Di Vizio, Omomorfismi ed isomorfismi connessi alle operazioni parametrizzate nelle strutture algebriche booliane. Ann. pontif. 1st. super. sci. e lettere “S. Chiara”, No. 13, pp. 431–466 (1963).Google Scholar
  160. 160.
    M. Emaldi and G. Zaches, I gruppi risolubili relativamente complementati. Ricerche mat., 14 (1):3–8 (1965).MathSciNetMATHGoogle Scholar
  161. 161.
    P. Erdös and R. Rado, Partition relations and transitivity domains of binary relations. J. London Math. Soc., 42(4):624–633 (1967).MathSciNetMATHGoogle Scholar
  162. 162.
    G. Ewald, Erweiterung projektive geometrischer Verbände. Math. Z., 87 (1):101–114 (1965).MathSciNetMATHGoogle Scholar
  163. 163.
    A. Fadini, Teoria degli elementi complessi nelle algebre di Boole. Ann. pontif. ist. super, sci. et lett. “S. Chiara”, No. 12, pp. 223–243 (1962).Google Scholar
  164. 164.
    Ky Fan, Subadditive funetiones on a distributive lattice and an extension of Szász’s inequality. J. Math. Analysis and Applic, 18(2):262–268 (1967).Google Scholar
  165. 165.
    J. E. Fenstad, On representation of polyadic algebras. Kg.norskevid. selskabs forhandl., 27(8):36–41 (1964).MathSciNetGoogle Scholar
  166. 166.
    F. Fiala and V. Novák, On isotone and homomorphic mappings. Arch. mat., 2 (1):27–32 (1966).MATHGoogle Scholar
  167. 167.
    P. D. Finch, On the lattice equivalence of topological spaces. J. Austral. Math. Soc., 6(4):495–5ll (1966).MathSciNetMATHGoogle Scholar
  168. 168.
    A. Fine. Abstract covering theorems. Fundam. Math., 52(2):205–207 (1963).MATHGoogle Scholar
  169. 169.
    W. L. Fischer, Die Boolesche Algebra. Archimedes, 19 (1):2–4 (1967).Google Scholar
  170. 170.
    W. L. Fischer, Anwendung der Boole-Ringe. Archimedes, 19(3):39–43 (1967).Google Scholar
  171. 171.
    J. Flachsmeyer, Einige topologische Fragen in der Theorie der Booleschen Algebren. Arch. Math., 16(1):25–33 (1965).MathSciNetMATHGoogle Scholar
  172. 172.
    J. Flachsmeyer, “Uber die Realisierung von Boole-Algebren als Boole-Algebren regulär offener Mengen,” General Topology and Related Modern Analysis and Algebra, Vol. 2, Prague (1967), pp. 133–139.MathSciNetGoogle Scholar
  173. 173.
    H. G. Flegg, L’algebre de Boole et son utilisation, Dunod, Trad. Paris (1967), 245 pp.MATHGoogle Scholar
  174. 174.
    J. Folkman, The homology groups of a lattice. J. Math. and Mech., l5(4):631–636 (1966).MathSciNetMATHGoogle Scholar
  175. 175.
    J. Fort, Eléments -isotypiques dans les (I) algébres modulaires. C. r. Acad. sci., 258(6):1676–1678 (1964).MathSciNetMATHGoogle Scholar
  176. 176.
    J. Fort, Contribution a l’étude des éléments tertiaires et isotypiques dans les modules et les ()-algebres. Bull. Soc. math. France, 92 (1):Supp., 99 pp.Google Scholar
  177. 177.
    D. J. Foulis, Semigroups co-ordinatizing orthomodular geometries. Canad. J. Math., 17(1):40–51 (1965).MathSciNetMATHGoogle Scholar
  178. 178.
    Z. Frolik, Fixed points of maps of extremally disconnected spaces and complete Boolean algebras. Bull. Acad. polon. sci. Sér. sci. math. astron. et phys., 16(4): 269–275 (1968).MathSciNetMATHGoogle Scholar
  179. 179.
    M. B. Frontera, Una functión numérica en los reticulos finitos que se anula para los reticulos reducibles. Publs. semin. mat. Fac. cienc. Zaragoza, No. 3, pp. 103–111 (1962).Google Scholar
  180. 180.
    M. B. Frontera, “Generalizacion del concepto de relacion de equivalencia en un conjunto,” Actas 5 Reun. anual. mat. esp., Valencia, 1964, Madrid (1967), pp. 203–220.Google Scholar
  181. 181.
    W. R. Frucht, Sobre el problema 6 de Birkhoff. Scientia (Chile), 31(134):5–21 (1964).Google Scholar
  182. 182.
    S. Fugiwara, A note on left complemented lattices. Res. Bull Fac. Liber. Arts. (Natur. Sci.), 2(3):19–22 (1963).Google Scholar
  183. 183.
    S. Fugiwara, On the parallelism in some left complemented lattice. Res. Bull. Fac. Liber. Arts, Oita Univ. (Natur. Sci.), 2(4):1–8) (1964).Google Scholar
  184. 184.
    S. Fujiwara, The generalization of Wilcox lattices. Res. Bull. Fac. Liberal Arts Oita Univ., 2(5):1–6 (1965).MathSciNetGoogle Scholar
  185. 185.
    T. Fugiwara, Permutability of semilattice congruences on lattices, Canad. J. Math., 19(2):370–375 (1967).MathSciNetGoogle Scholar
  186. 186.
    H. Gaifman, Remarks on complementation in the lattice of all topologies. Canad. J. Math., 18(1):83–88 (1966).MathSciNetMATHGoogle Scholar
  187. 187.
    E. Gedeonová, Der Jordan-Höldersche Satz für unendliche Ketten in teilweise geordneten Mengen. Acta Fac. rerum natur. Univ. Comenianae. Math., 10(3): 41–50 (1965).MATHGoogle Scholar
  188. 188.
    M. D. Gerhardts, Zur Characterisierung distributiver Schiefverbände. Math. Ann., 161(3):231–240 (1965).MathSciNetMATHGoogle Scholar
  189. 189.
    M. D. Gerhardts, Über die Zerlegbarkeit von nichtkommutativen verbänden in kommutative Teilverbände. Proc. Japan Acad., 41(10):883–888 (1965).MathSciNetMATHGoogle Scholar
  190. 190.
    A. C. Gillie, Binary Arithmetic and Boolean Algebra, McGraw-Hill, New York (1965), 248 pp.Google Scholar
  191. 191.
    S. Ginsburg and J. R. Isbell, The category of cofinal types. I. Trans. Amer. Math. Soc., 116(4):386–393 (1965).MathSciNetMATHGoogle Scholar
  192. 192.
    Y. Give’on, Lattice matrices. Inform, and Control, 7(4):477–484 (1964).MathSciNetMATHGoogle Scholar
  193. 193.
    E. D. Goodrich, Boolean-like functions. Amer. Math. Monthly, 73(1):40–44 (1966).MathSciNetMATHGoogle Scholar
  194. 194.
    R. L. Goodstein, The solution of equations in. a lattice. Proc. Roy. Soc. Edinburgh, A67(3):23l-242 (1967).MathSciNetGoogle Scholar
  195. 195.
    R. L. Goodstein, On weak complements in a lattice. Rev. roumaine math. pures et appl., 12(8):1059–1063 (1967).MathSciNetMATHGoogle Scholar
  196. 196.
    R. N. R. Gopala, Vector spaces over a regular ring. Math. Ann., 167(4):280–291 (1966).MathSciNetGoogle Scholar
  197. 197.
    J. Grappy, Demi-groupes dont le treillis des congruences est un treillis complémenté. Sémin. Dubreil et Pisot. Fac. Sci. Paris, 17(2):21/01–21/21 (1967).Google Scholar
  198. 198.
    G. Grätzer, On Boolean functiones. (Notes on lattice theory II). Rev. math. pures. et appl. (RPR), 7(4):693–697 (1962).MATHGoogle Scholar
  199. 199.
    G. Grätzer, A generalization of Stone’s representation theorem for Boolean algebras. Duke math. J., 30(3):469–474 (1963).MathSciNetMATHGoogle Scholar
  200. 200.
    G. Grätzer, Boolean functions on distributive lattices. Acta math. Acad. scient. hung.., 15(1–2):195–201 (1964).MATHGoogle Scholar
  201. 201.
    G. Grätzer, On the family of certain subalgebras of a universal algebra. Proc. Koninkl. nederl. akad. wet., A68(5):790–802 (1965): Indagationes math., 27(5): 790–802 (1965).Google Scholar
  202. 202.
    G. Grätzer, Equational classes of lattices. Duke Math. J., 33(3):613–622 (1966).MathSciNetMATHGoogle Scholar
  203. 203.
    G. Grätzer and W. A. Lampe, On subalgebra lattices of universal algebras. J. Algebra, 7(2):263–270 (1967).MathSciNetMATHGoogle Scholar
  204. 204.
    G. Grimeisen, Zum Produkt R-topologischer Verbäde, Spisy pirodovd. fak. univ. Brn, No. 9, pp. 463–468 (1964).Google Scholar
  205. 205.
    G. Grimeisen, Ein Produkt R-topologischer Verbände. Math. Z., 88(4):309–319 (1965).MathSciNetMATHGoogle Scholar
  206. 206.
    O. Hájek, Representation of finite-length modular lattices. Czech. Math. J., 15(4):503–520 (1965).Google Scholar
  207. 207.
    O. Hájek, Characteristics of modular finite-length lattices. Czech. Math. J., 15(4):521–525 (1965).Google Scholar
  208. 208.
    P. R. Halmos, Lectures on Boolean Algebras, Van Nostrand, New York (1963), 152 pp.MATHGoogle Scholar
  209. 209.
    R. W. Hansell, Monotone subnets in partially ordered sets. Proc. Amer. Math. Soc., 18(5):854–858 (1967).MathSciNetMATHGoogle Scholar
  210. 210.
    D. J. Hansen, A functional characterization of a Boolean determinant. J. London Math. Soc., 41(4):723–727 (1966).MathSciNetMATHGoogle Scholar
  211. 211.
    Z. S. Harris, Decomposition lattices. Univ. of Pennsylvania Transform, and Discourse Analysis Paper, No. 70, 33 pp. (1967).Google Scholar
  212. 212.
    E. Harzheim, Einbettungssätze für totalgeordnete Mengen. Math. Ann., 158(2): 90–108 (1965).MathSciNetMATHGoogle Scholar
  213. 213.
    E. Harzheim, Einbettung totalgeordneter Mengen in lexikographische Produkte. Math. Ann., 170(4):245–252 (1967).MathSciNetMATHGoogle Scholar
  214. 214.
    E. Harzheim, Kombinatorische Betrachtungen über die Struktur der Potenzmenge. Math. Nachr., 34(3–4):123–141 (1967).MathSciNetMATHGoogle Scholar
  215. 215.
    V. Havel, Zerlegungen in Karjesischen Funktionen. (Vorläuf. Mitt.) Comment. math. Univ. carolinae, 6 (1):43–47 (1965).MathSciNetMATHGoogle Scholar
  216. 216.
    V. Havel, Kartesisch assoziierte Zerlegungen. (Vorläuf. Mitt.). Comment, math. Univ. carolinae, 6 (1):49–51 (1965).MathSciNetMATHGoogle Scholar
  217. 217.
    V. Havel, Unessential Zassenhaus refinements. Arch. mat., 1(1):35–38 (1965).MathSciNetMATHGoogle Scholar
  218. 218.
    V. Havel, Eigenschaften des Halbverbandes der Zerlegungen in einer Menge. Arch. mat., 1(4):213–215 (1965).MathSciNetMATHGoogle Scholar
  219. 219.
    V. Havel, On associated partitions. asop. pstov. mat., 91(3):241–245 (1966).MathSciNetMATHGoogle Scholar
  220. 220.
    I. Hayashi, The normality of the product of two linearly ordered spaces. Proc. Japan Acad., 43(4):300–304 (1967).MathSciNetMATHGoogle Scholar
  221. 221.
    T. J. Head, Note on groups and lattices. Nieuwe arch. wiskunde, 13(2):110–112 (1965).MathSciNetMATHGoogle Scholar
  222. 222.
    T. J. Head, Purity in compactly generated modular lattices. Acta math. Acad. scient. hung., 17(l-2):55–59 (1966).MathSciNetMATHGoogle Scholar
  223. 223.
    H. Heineken, Über die Charakterisierung von Gruppen durch gewisse Untergruppenverbände. J. reine und angew. Math., 220(l-2):30–36 (1965).MathSciNetMATHGoogle Scholar
  224. 224.
    C. Heuchenne, La saturation dans les treillis. Bull. Soc. roy. sci. Liege, 32(9): 632–652 (1963).MathSciNetGoogle Scholar
  225. 225.
    G. C. Hewitt, Limits in certain classes of abstract algebras. Pacif. J. Math., 22(1): 109–115 (1967).MathSciNetMATHGoogle Scholar
  226. 226.
    K. Hino, A decomposition theorem in a multiplicative system. Osaka J. Math., 2(1):147–152 (1965).MathSciNetMATHGoogle Scholar
  227. 227.
    J. Holec and J. Marik, Continuous additive mappings. Czech. Math. J., 15(2): 237–243 (1965).MathSciNetGoogle Scholar
  228. 228.
    W. Holsztyski, Topological dimension of lattices. Bull. Acad. polon. sci. Sér. sci. math., astron. et phys., 14(2):63–69 (1966).Google Scholar
  229. 229.
    J. Horejs, On decompositions in sets. Spisy pírodovdfak. univ. Brn, No. 1, pp. 15–22 (1964).MathSciNetGoogle Scholar
  230. 230.
    Chen-Jung Hsu, On lattice theoretic characterization of the parallelism of affine geometry. Ann. Math., 50(2):1–7 (1949).MATHGoogle Scholar
  231. 231.
    N. C. Hsu, Elementary proof of Hu’s theorem on isotone mappings. Proc. Amer. Math. Soc., 17(1):111–114 (1966).MathSciNetMATHGoogle Scholar
  232. 232.
    A. J. Insel, A relationship between the complete topology and the order topology of a lattice. Proc. Amer. Math. Soc.,15(6):847–850 (1964).MathSciNetMATHGoogle Scholar
  233. 233.
    Iqbalunnisa, Maximal congruences on a lattice. J. Madras Univ., B33(2):113–128 (1963).MathSciNetGoogle Scholar
  234. 234.
    Iqbalunnisa, On neutral elements in a lattice J. Indian Math. Soc., 28 (1):25–3l (1964).MathSciNetMATHGoogle Scholar
  235. 235.
    Iqbalunnisa, Normal, simple congruences and weakly modular lattices. Current Sci., 33(3):78 (1964).Google Scholar
  236. 236.
    Iqbalunnisa, Weak modularity and permutability of congruences in lattices. Current Sci., 33(4):108 (1964).Google Scholar
  237. 237.
    Iqbalunnisa, Standard ideals in lattices. Current Sci., 33(2):44–45 (1964).Google Scholar
  238. 238.
    Iqbalunnisa, Neutrality in weakly modular lattices. Acta math. Acad. scient. hung., 16(3–4):325–326 (1965).MathSciNetMATHGoogle Scholar
  239. 239.
    Iqbalunnisa, On some problems of G. Gratzer and E. T. Schmidt. Fundam. math., 57(2):181–185 (1965).MathSciNetMATHGoogle Scholar
  240. 240.
    Iqbalunnisa, On types of lattices. Fundam. math., 59(1):97–102 (1966).MathSciNetMATHGoogle Scholar
  241. 241.
    Iqbalunnisa, Permutable congruence in a lattice. Ill. J. Math., 10(2):235–239 (1966).MathSciNetMATHGoogle Scholar
  242. 242.
    Iqbalunnisa, Characterizations of weakly modular lattices. Fundam. math., 59(3):301–305 (1966).MathSciNetMATHGoogle Scholar
  243. 243.
    Iqbalunnisa, On a Galois correspondence between the lattice of ideals and the lattice of congruences on a lattice L. Fundam. math., 59(1):103–108 (1966).MathSciNetMATHGoogle Scholar
  244. 244.
    Iqbalunnisa, Normal, simple and neutral congruences on lattices. Ill. J. Math., 10(2):227–234 (1966).MathSciNetMATHGoogle Scholar
  245. 245.
    J. R. Isbell, The category of cofinal types. II. Trans. Amer. Math. Soc., 116(4): 394–416 (1965).MathSciNetMATHGoogle Scholar
  246. 246.
    J. R. Isbell, Spaces without large projective subspaces. Math. Scand., 17:89–105 (1965).MathSciNetMATHGoogle Scholar
  247. 247.
    J. R. Isbell, Directed unions and chains. Proc. Amer. Math. Soc., 17(6):1467–1468 (1966).MathSciNetMATHGoogle Scholar
  248. 248.
    P. L. Ivnescu, Systems of pseudo-Boolean equations and inequalities. Bull. Acad. polon. sci., Sér. sci. math. astron et phys., 12(11):673–680 (1964).Google Scholar
  249. 249.
    P. L. Ivãnescu, On the minimal decomposition of finite partially ordered sets in chains. Rev. roumaine math. pures et appl., 9(10):897–903 (1964).MATHGoogle Scholar
  250. 250.
    P. V. Jagannadham, Linear transformations in a boolean vector space. Math. Ann., 167(3):240–247 (1966).MathSciNetMATHGoogle Scholar
  251. 251.
    P. V. Jagannadham, A characterisation of Boolean extension of universal algebras. Math. Ann., 172(2):119–123 (1967).MathSciNetMATHGoogle Scholar
  252. 252.
    J. Jakubik and M. Kolibiar, Über euklidische Verbände. Math. Ann., 155(4):334–342 (1964).MathSciNetMATHGoogle Scholar
  253. 253.
    L. Jano, Vlastnosti Zassenhausovy konstrukce v grupách a svazech. asop. pstow. mat., 88(2):246–249 (1963).Google Scholar
  254. 254.
    M. F. Janowitz, Baer semigroups. Duke Math. J., 32 (1):85–95 (1965).MathSciNetMATHGoogle Scholar
  255. 255.
    M. F. Janowitz, Quantifier theory on quasiorthomodular lattices. Ill. J. Math., 9(4):660–676 (1965).MathSciNetMATHGoogle Scholar
  256. 256.
    M. F. Janowitz, A characterisation of standard ideals. Acta math. Acad. scient. hung., 16(3–4):289–301 (1965).MathSciNetMATHGoogle Scholar
  257. 257.
    M. F. Janowitz, A note on normal ideals. J. Sci. Hiroshima Univ., Ser. A, Div. 1, 30 (1):1–9 (1966).MathSciNetMATHGoogle Scholar
  258. 258.
    M. F. Janowitz, A semigroup approach to lattices. Canad. J. Math., 18(6):1212–1223 (1966).MathSciNetMATHGoogle Scholar
  259. 259.
    M. F. Janowitz, The center of a complete relatively complemented lattice is a complete sublattice. Proc. Amer. Math. Soc., 18(1):189–190 (1967).MathSciNetMATHGoogle Scholar
  260. 260.
    M. F. Janowitz, IC-lattices. Portug math., 24(3–4):115–122 (1965).MathSciNetMATHGoogle Scholar
  261. 261.
    R. E. Johnson, Distinguished rings of linear transformations. Trans. Amer. Math. Soc., 111(3):400–412 (1964).MathSciNetMATHGoogle Scholar
  262. 262.
    R. E. Johnson, Potent rings. Trans. Amer. Math. Soc., 119(3):524–534 (1965).MATHGoogle Scholar
  263. 263.
    D. H. J. de Jongh and A. S. Troelstra, On the connection of partially ordered sets with some pseudo-Boolean algebras. Proc. Koninkl. nederl. akad. wet., A69(3): 317–329 (1966): Indagationes math., 28(3):317–329 (1966).Google Scholar
  264. 264.
    P. Julien, Sur quelques problèmes de la théorie des chaînes permutées. C. r. Acad. sci., AB262(4): A205–A208 (1966).Google Scholar
  265. 265.
    P.-F. Jurie, Notion de quasi-somme amalgamée: premieres applications l’algébre booléienne polyadique. C. r. Acad. sci., 264(24):A1033–A1036 (1967).MathSciNetGoogle Scholar
  266. 266.
    J. A. Kaiman, A two-axiom definition of lattices. Rev. roumaine math. pures et appl., 13(5):669–670 (1968).Google Scholar
  267. 267.
    D. A. Kappos, “Einbettung eines beliebigen Verbandes in einem o-topologischen Verband,” Proc. Internat. Congr. Math. (1954), 2, Amsterdam (1954), pp. 30–31.Google Scholar
  268. 268.
    D. A. Kappos and F. Papangelou, Remarks on the extension of continuous lattices. Math. Ann., 166(4):277–283 (1966).MathSciNetMATHGoogle Scholar
  269. 269.
    M. Karlowicz and K. Kuratowski, On relations between some algebraic and topological properties of lattices. Fundam. math., 58(2):219–228 (1966).MathSciNetMATHGoogle Scholar
  270. 270.
    R. Kaufman, Ordered sets and compact spaces. Colloq. math., 17(1):35–39 (1967).MathSciNetMATHGoogle Scholar
  271. 271.
    H. J. Keisler, Good ideals in fields of sets. Ann. Math., 79(2):338–359 (1964).MathSciNetMATHGoogle Scholar
  272. 272.
    H. J. Keisler, Universal homogeneous Boolean algebras. Mich. Math. J., 13(2): 129–132 (1966).MathSciNetMATHGoogle Scholar
  273. 273.
    H. J. Keisler, Universal homogeneous Boolean algebras. Michigan Math. J., 13(2): 129–132 (1966).MathSciNetMATHGoogle Scholar
  274. 274.
    D. C. Kent, On the order topology in a lattice. Ill. J. Math., 10 (1):90–96 (1966).MathSciNetMATHGoogle Scholar
  275. 275.
    D. C. Kent, The interval topology and order convergence as dual convergence structures. Amer. Math. Monthly, 74(4):426–427 (1967).MathSciNetMATHGoogle Scholar
  276. 276.
    S. Kinugawa and J. Hashimoto, On relative maximal ideals in lattices. Proc. Japan Acad., 42 (1):1–4 (1966).MathSciNetMATHGoogle Scholar
  277. 277.
    A. Kirsch, Über lineare Ordnungen endlicher Boolescher Verbände. Arch. Math., 17(6):489–491 (1966).MathSciNetMATHGoogle Scholar
  278. 278.
    K. Koh, On one-sided ideals which are prime rings. Amer. Math. Monthly, 73(2): 176–177 (1966).MathSciNetMATHGoogle Scholar
  279. 279.
    M. Kolibiar, Über Fixpunktsätze in geordneten Mengen. Spisy pírodovd. fak. univ. Brne, No. 9, pp. 469–472 (1964).Google Scholar
  280. 280.
    M. Kolibiar, “Linien in Verbänden,” An. stiint Univ. Iasi, Sec. Ia, 11B:89–98 (1965).MathSciNetGoogle Scholar
  281. 281.
    B. Kolman, Semi-modular Lie algebras. J. Sci. Hiroshima Univ., Ser. A, Div. I, 29(2):149–163 (1961).MathSciNetGoogle Scholar
  282. 282.
    O. Kowalski and B. Pondlíek, O charaktereh etzc. asop. pstov. mat., 91(1):1–3 (1966).MATHGoogle Scholar
  283. 283.
    S. A. Kripke, An extension of a theorem of Gaifman-Hales-Solovay. Fundam. math., 61(1):29–32 (1967).MathSciNetMATHGoogle Scholar
  284. 284.
    D. Kurepa, Fixpoints of monotone mappings of ordered sets. Glasnik mat.-fiz. i astron., 19(3–4):167–173 (1964).MathSciNetMATHGoogle Scholar
  285. 285.
    D. Kurepa, Monotone mappings between some kinds of ordered sets. Glasnik math.-fiz. i astron., 19(3–4):175–186 (1964).MathSciNetMATHGoogle Scholar
  286. 286.
    D. Kurepa, Remark on recent two results of Dilworth and Gleason. Publs. Inst. math., 4:107–108 (1964).MathSciNetGoogle Scholar
  287. 287.
    D. Kurepa, Imbedding of ordered sets in minimal lattices. Publs. Inst. math., 6:165–170 (1966).MathSciNetGoogle Scholar
  288. 288.
    R. H. La Grange, Jr., “Some problems concerning Boolean algebras,” Doctoral dissertation, Univ. of Colorado (1966), 63 pp.; Dissert. Abstr., B28(4):1615–1616 (1967).Google Scholar
  289. 289.
    F. Lapscher, Introduction de variables surabondantes dans une fonction booléenne et applications. C. r. Acad. sci., 259(23):4206–4208 (1964).MathSciNetMATHGoogle Scholar
  290. 290.
    J. D. Lawson, “Vietoris mappings and embeddings of to’pological semilattices,” Doctoral dissertation, Univ. of Tennessee (1967), 99 pp.; Dissert. Abstr., B28(9): 3783 (1968).Google Scholar
  291. 291.
    S. Leader, Kimber’s theorem on weighted sets. Amer. Math. Monthly, 74(10): 1226–1227 (1967).MathSciNetMATHGoogle Scholar
  292. 292.
    A. Lebow, A Schroeder - Bernstein theorem for projections. Proc. Amer. Math. Soc., 19(1):144–145 (1968).MathSciNetMATHGoogle Scholar
  293. 293.
    A. Lehman, “Postulants for a normed Boolean algebra,” Math. Res. Center, Univ. of Wisconsin Techn. Summary Rept. No. 389, Madison (1963), 46 pp.Google Scholar
  294. 294.
    A. Lehman, Postulates for a normed Boolean algebra. SIAM Rev., 7(2):253–273 (1965).MathSciNetMATHGoogle Scholar
  295. 295.
    C. W. Leininger, On chains of related sets. Bull. Math. Biophys., 28(1):103–106 (1966).MathSciNetMATHGoogle Scholar
  296. 296.
    F. E. J. Linton, Injective Boolean o-algebras. Arch. Math., 17(5):383–387 (1966).MathSciNetMATHGoogle Scholar
  297. 297.
    L. Loomis, The lattice-theoretic background of the dimension theory of operator algebra. Mem. Amer. Math. Soc., No. 18 (1955), 36 pp.MathSciNetGoogle Scholar
  298. 298.
    H. F. J. Lowig, Note on the self-duality of the unrestricted distributive law in complete lattices. Israel J. Math., 2(3):170–173 (1964).MathSciNetMATHGoogle Scholar
  299. 299.
    W. A. J. Luxemburg, A remark on Sikorski’s extension theorem for homomorphisms in the theory of Boolean algebras. Fundam. math., 55(3):239–247 (1964).MathSciNetMATHGoogle Scholar
  300. 300.
    M. D. MacLaren, Nearly modular orthocomplemented lattices. Trans. Amer. Math. Soc., 114(2):401–16 (1965).MathSciNetMATHGoogle Scholar
  301. 301.
    M. J. Maczyski, Generalized free m-products of m-distributive Boolean algebras with an m-amalgamated subalgebra. Bull. Acad. polon. sci. Sér. sci. mat., astron. et phys., 14(10):539–542 (1966).Google Scholar
  302. 302.
    M. J. Maczyski, A property of retracts of +-homogeneous, +-universal Boolean algebras. Bull. Acad. polon. sci. Sér. sci. math., astron. et phys., 14(11): 607–608 (1966).Google Scholar
  303. 303.
    M. J. Maczyski and T. Traczyk, The m-amalgamation property for m-distributive Boolean algebras. Bull. Acad. Polon. Sci. Sér. sci. math., astron. et phys., 15(2):57–60 (1967).Google Scholar
  304. 304.
    F. Maeda, Modular centers of affine matroid lattices. J. Sci. Hiroshima Univ., Ser. A, Div. 1, 27(2):73–84 (1963).MATHGoogle Scholar
  305. 305.
    F. Maeda, Parallel mappings and coparability theorem in affine matroid lattice. J. Sci. Hiroshima Univ., Ser. A, Div. 1, 17(2):85–96 (1963).Google Scholar
  306. 306.
    F. Maeda, Point-free parallelism in Wilcox lattices. J. Sci. Hiroshima Univ., Ser. A, Div. 1, 28 (1):19–32 (1964).MATHGoogle Scholar
  307. 307.
    F. Maeda, Perspectivity of points in matroid lattices. J. Sci. Hiroshima Univ., 1964, Ser. A, Div. 1, 28(2):101–112 (1964).MATHGoogle Scholar
  308. 308.
    S. Maeda, On the symmetry of the modular relation in atomic lattices. J. Sci. Hiroshima Univ., Ser. A, Div. 1, 29(2):165–170 (1961).Google Scholar
  309. 309.
    S. Maeda, On conditions for the orthomodularity. Proc. Japan. Acad., 42(3):247–251 (1966).MathSciNetMATHGoogle Scholar
  310. 310.
    R. Magari, Sulle connessioni fra i vari modi di rappresentare un’algebra. Matematiche, 20 (1):22–40 (1965).MathSciNetMATHGoogle Scholar
  311. 311.
    P. Mangani, Extensioni libere di un’algebra di Boole. Boll. Unione mat. ital., 20(2):210–219 (1965).MathSciNetMATHGoogle Scholar
  312. 312.
    R. Maronna, A characterization of Morgan lattices. Portug. math., 23(3):169–171 (1964).MathSciNetMATHGoogle Scholar
  313. 313.
    L. H. Martin, Two ternary algebras and their associated lattices. Amer. Math. Monthly, 72(10):1088–1091 (1965).MathSciNetMATHGoogle Scholar
  314. 314.
    J. Mather, Invariance of the homology of a lattice. Proc. Amer. Math. Soc., 17(5):1120–1124 (1966).MathSciNetMATHGoogle Scholar
  315. 315.
    J. C. Mathews and R. F. Anderson, A comparison of two modes of order convergence. Proc. Amer. Math. Soc., 18(1):100–104 (1967).MathSciNetMATHGoogle Scholar
  316. 316.
    Y. Matsushima, Between topology for lattices. J. Math. Soc Japan, 16(4):335–341 (1964).MathSciNetMATHGoogle Scholar
  317. 317.
    I. G. Maurer and I. Purdea, Despre o topologie in multimea relatiilor binare. Studia Univ. Babes-Bolyai. Ser. math.-phys., 9 (1):21–24 (1964).MathSciNetMATHGoogle Scholar
  318. 318.
    J. Mayer and M. Novotny, On some topologies on products of ordered sets. Arch. mat., 1(4):251–257 (1965).MathSciNetMATHGoogle Scholar
  319. 319.
    J. Mayer-Kalkschmidt and E. Steiner, Some theorems in set theory and applications in the ideal theory of partially ordered sets. Duke Math. J., 31 (2): 287–289 (1964).MathSciNetMATHGoogle Scholar
  320. 320.
    S. D. McCartan, On subsets of a partially ordered set. Proc. Cambridge Philos. Soc., 62(4):583–595 (1966).MathSciNetMATHGoogle Scholar
  321. 321.
    S. D. McCartan, A quotient ordered space. Proc. Cambridge Philos. Soc., 64(2): 317–322 (1968).MathSciNetMATHGoogle Scholar
  322. 322.
    P. J. McCarthy, Primary decomposition in multiplicative lattices. Math. Z.f 90(3):185–189 (1965).MATHGoogle Scholar
  323. 323.
    S. McCall, The completeness of Boolean algebra. Z. math. Logik und Grundl. Math., 13(4):367–376 (1967).MathSciNetMATHGoogle Scholar
  324. 324.
    K. N. Meenakshi, Proximity structures in boolean algebras. Acta scient. math., 27(1):85–92 (1966).MathSciNetMATHGoogle Scholar
  325. 325.
    R. A. Melter, Boolean valued rings and Boolean metric spaces. Arch. Math., 15(4–5):354–363 (1964).MathSciNetMATHGoogle Scholar
  326. 326.
    R. A. Melter, Contributions to Boolean geometry of p-rings. Pacif. J. Math., 14(3):995–1017 (1964).MathSciNetMATHGoogle Scholar
  327. 327.
    R. J. Mihalek, Modular extensions of point-modular lattices. Proc. Japan Acad., 42(3):225–230 (1966).MathSciNetMATHGoogle Scholar
  328. 328.
    R. J. Mihalek, Skewness in special semimodular lattices. Proc. Japan Acad., 42(3):237–238 (1966).MathSciNetMATHGoogle Scholar
  329. 329.
    S. D. Milic, On the isomorphism of modular lattices. Math. Vesn., 2(2):153–155 (1965).MathSciNetGoogle Scholar
  330. 330.
    E. C. Milner, On complementary initial and final sections of simply ordered sets. J. London Math. Soc., 42(2):269–280 (1967).MathSciNetMATHGoogle Scholar
  331. 331.
    Y. Miyashita, Quasi-pro jective modules, perfect modules, and a theorem for modular lattices. J. Fac Sci. Hokkaido Univ., Ser. 1, 19(2):86–110 (1966).MathSciNetMATHGoogle Scholar
  332. 332.
    J. D. Monk, Singulary cylindric and polyadic equality algebras. Trans. Amer. Math. Soc., 112(2):185–205 (1964).MathSciNetMATHGoogle Scholar
  333. 333.
    J. D. Monk, Nontrivial m-injective Boolean algebras do not exist. Bull. Amer. Math., Soc., 73(4):526–527 (1967).MathSciNetMATHGoogle Scholar
  334. 334.
    G. S. Monk, “The representation of primary lattices,” Doctoral dissertation, Univ. of Minnessota (1966), 154 pp.; Dissert. Abstr., B27(3):886 (1966).Google Scholar
  335. 335.
    A. Monteiro, Généralisation d’unthéorème de R. Sikorski sur les algèbre de Boole. Bull. sci. math., 89(3–4):65–74 (1965).MathSciNetMATHGoogle Scholar
  336. 336.
    L. Monteiro, Sur les algebres de Lukasiewicz injectives. Proc. Japan. Acad., 4l(7):578–58l (1965).MathSciNetMATHGoogle Scholar
  337. 337.
    R. Moors, Compactification des espaces topologiques. Bull. Soc. roy. sci. Liège, 35(1–2):40–56 (1965).MathSciNetGoogle Scholar
  338. 338.
    A. Morel, Ordering relations admitting automorphisms. Fundam. math., 54(3): 279–284 (1964).MathSciNetGoogle Scholar
  339. 339.
    J. Morgado, Introdução a teoria dos reticulados. T. 1, T. 2. Textos mat. Inst. fis. e mat. Univ. Recife, No. 10, pp. 1–244 (1962): No. 11, pp. 245–342 (1962).Google Scholar
  340. 340.
    J. Morgado, Note on the central closure operators of complete lattices. Proc. Koninkl. nederl. akad. wet., A67(4):467–476 (1964): Indagationes math., 26(4): 467–476 (1964).MathSciNetGoogle Scholar
  341. 341.
    J. Morgado, Note on the distributive closure operators of a complete lattice. Portug. math., 23(1–2):11–25 (1964).MathSciNetMATHGoogle Scholar
  342. 342.
    J. Morgado, None on a-complete congruences of -complete lattices. Portug. math., 23(3–4):131–138 (1964).MathSciNetMATHGoogle Scholar
  343. 343.
    J. Morgado, A characterization of the central closure operators of complete lattices. Proc. Koninkl. nederl. akad. wet., A68 (1):70–73 (1965): Indagationes math., 27 (1):70–73 (1965).MathSciNetGoogle Scholar
  344. 344.
    J. Morgado, Extensão de alguns resultados de Ore sôbre homomorfismos de reticulados completos. Notas e comuns mat., No. 1 (1965), 5 pp.Google Scholar
  345. 345.
    J. Morgado, Urn teorema sôbre conguências -completas de reticulados -completos. Notas e comuns mat., No. 3 (1965), 8 pp.Google Scholar
  346. 346.
    J. Morgado, Note on the system of closure operators of the ordinal product of partially ordered sets. Notas e comuns mat., No. 5 (1965), 8 pp.Google Scholar
  347. 347.
    J. Morgado, On the complete homomorphic images of the lattice of closure operators of a complete lattice. Notas e comuns mat., No. 8 (1965), 13 pp.Google Scholar
  348. 348.
    J. Morgado, Lattices in which a < b c implies a < b or a < c Portug. math., 24(1–2):13–19 (1965).MathSciNetMATHGoogle Scholar
  349. 349.
    J. Morgado, Note on the system of closure operators of the ordinal product of partially ordered sets. Portug. math., 24(3–4):189–195 (1965).MathSciNetMATHGoogle Scholar
  350. 350.
    J. Morgado, On the lattices of residuated closure operators of complete lattices. Bol. Soc. mat. São Paulo, 18(1–2):31–37 (1966).Google Scholar
  351. 351.
    J. Morgado, Note on the factorization of the lattice of closure operators of a complete lattice. Proc. Koninkl. nederl. akad. wet., A69(1):34–41 (1966): Indagationes math., 28 (1):34–41 (1966).Google Scholar
  352. 352.
    J. Morgado, On the lattices of residuated closure operators of complete lattices. Notas e comuns mat., No. 12, 7 pp. (1966).Google Scholar
  353. 353.
    W. D. Munn, Uniform semilattices and bisimple inverse semigroups. Quart. J. Math., 17(66):151–159 (1966).MathSciNetMATHGoogle Scholar
  354. 354.
    W. D. Munn, The lattice of congruences on a bisimple -semigroup. Proc. Roy. Soc. Edinburgh, 1965–1967, A67(3):175–184 (1967).MathSciNetGoogle Scholar
  355. 355.
    T. Nakano, Rings and partly ordered systems. Math. Z., 99(5):335–376 (1967).Google Scholar
  356. 356.
    F. Napolitani, Elementi U -quasi distributivi nel reticolo dei sottogruppi di un gruppo. Ricerche mat., 14(2):93–101 (1965).MathSciNetMATHGoogle Scholar
  357. 357.
    O. T. Nelson, Jr., Subdirect products of finite lattices. Doct. diss. Vanderbilt Univ., (1965), 49 pp.; Dissert. Abstr., 26(4):2240 (1965).Google Scholar
  358. 358.
    W. C. Nemitz, “Implicative semi-lattices,” Res. Participat. Coll. Teachers Math., Norman, Okla. (1963).Google Scholar
  359. 359.
    W. C. Nemitz, Implicative semi-lattices. Trans. Amer. Math. Soc., 117(5):128–142 (1965).MathSciNetMATHGoogle Scholar
  360. 360.
    V. Novák, O jedné vlastnosti ordinálního soutu. asopis pstov. mat., 89:78–94 (1964).MATHGoogle Scholar
  361. 361.
    V. Novák, On the lexicographic dimension of linearly ordered sets. Fundam math., 56:9–20 (1964).MATHGoogle Scholar
  362. 362.
    V. Novák, On the v -dimension and v -pseudodimension of ordered sets. Z. mafth. Logik und Grundl. Math., 10(1):43–48 (1964).MATHGoogle Scholar
  363. 363.
    V. Novák, Some generalizations of the dimension of ordered sets. Spisy pírodovd. fak. univ. Bre, No. 9, pp. 477–478 (1964).Google Scholar
  364. 364.
    V. Novák, On the lexicographic product of ordered sets. Czech. Mat. J., 15(2): 270–282 (1965).Google Scholar
  365. 365.
    V. Novák, On universal quasi-ordered sets. Czech. Mat. J., 15(4):589–595 (1965).Google Scholar
  366. 366.
    L. G. Novák, On n-ordered sets and order completeness. Pacif. J. Math., 15(4): 1337–1345 (1965).Google Scholar
  367. 367.
    M. Novotný, “Idealtopologien auf geordneten Menger,” General Topology and Related Modern Analysis and Algebra, Vol. 2, Prague (1967), pp. 274–275.Google Scholar
  368. 368.
    M. Novotný and L. Skula, Über gewisse Topologien auf geordneten Mengen. Fundam. Math., 56(3):313–324 (1965).MATHGoogle Scholar
  369. 369.
    R. Padmanabhan, On some ternary relations in lattices. Colloq. math., 15(2): 195–198 (1966).MathSciNetMATHGoogle Scholar
  370. 370.
    R. Padmanabhan, On axioms for semi-lattices. Canad. Math. Bull., 9(3):357–358 (1966).MathSciNetMATHGoogle Scholar
  371. 371.
    D. M. Paine, “Some grouplike properties of partition systems,” Doctoral dissertation, Univ. of Wisconsin (1963), 103 pp.; Dissert. Abstr., 24(4):1637 (1963).Google Scholar
  372. 372.
    D. Papert, Congruence relations in semi-lattices. J. London Math. Soc., 39(4): 723–729 (1964).MathSciNetMATHGoogle Scholar
  373. 373.
    S. Papert, An abstract theory of topological subspaces. Proc. Cambridge Philos. Soc., 60(2):197–203 (1964).MathSciNetMATHGoogle Scholar
  374. 374.
    R. Permutti, Sulle semicongruenze di un reticolo. Rend. Accad. scil fis. e mat. Soc. naz. sci lettere ed arti Napoli, 31:160–167 (1964).MathSciNetGoogle Scholar
  375. 375.
    W. Y. Pervin and H. J. Biesterfeldt, Jr., Regular topologies and posets. Proc. Amer. Math. Soc., 17(4):903–905 (1966).MathSciNetMATHGoogle Scholar
  376. 376.
    W. Y. Pervin and H. J. Biesterfeldt, Jr., Uniformization of convergence spaces. Part II. Conjugate convergence structures and bi-structures. Math. Ann., 177(1): 43–48 (1968).MathSciNetMATHGoogle Scholar
  377. 377.
    A. Petcu, Definirea laticilor numai cu ajutorul legilor de associativitate i absorbtie. Studii i cercetri mat. Acad. RPR, 16(10):1265–1280 (1964).MathSciNetMATHGoogle Scholar
  378. 378.
    A. Petcu, Short definitions of lattices, using the associative and absorption laws. Rev. roumaine math. pures et appl., 16(10):339–355 (1964).MathSciNetGoogle Scholar
  379. 379.
    A. Petcu, Definirea algebrelor booleene i a semilaticilor cu ajutorual a doua axiome-identitti. Studii i cercetri mat. Acad. RSR, 19(6):891–895 (1967).MathSciNetGoogle Scholar
  380. 380.
    G. Pic, Sur un théoreme de la théorie des nombres et ses applications a la théorie des treillis et des groupes. Studia Univ. Babes-Bolyai. Ser. math.-phys., 11(2): 21–30 (1966).MathSciNetMATHGoogle Scholar
  381. 381.
    H. E. Pickett, A note on generalized equivalence relations. Amer. Math. Monthly, 73(8):860–861 (1966).MathSciNetMATHGoogle Scholar
  382. 382.
    R. S. Pierce, The global dimension of Boolean rings. J. Algebra, 7 (1):9l–99 (1967).MathSciNetMATHGoogle Scholar
  383. 383.
    C. Pinter,Sur Tobtention des formes minimales de fonctions booleennes conjonctives, Doctoral dissertation, Univ. of Paris (1964), 90 pp.Google Scholar
  384. 384.
    J. Plonka, Representation theorems for idempotent quasi-abelian semigroups and distributive quasi-lattices. Bull. Acad. polon. sci. sér. sci. math., astron. et phys., 14(7):359–360 (1966).MathSciNetMATHGoogle Scholar
  385. 385.
    D. Ponasse, Algébrisation du calcul proportionnel au moyen d’anneaux booleiens universels. Ann. Fac. scil Univ. Clermont. Math., No. 4, pp. 33–36 (1967).MathSciNetMATHGoogle Scholar
  386. 386.
    S. Pontier, Sur les groupes (demigroups) dont le treillis des sous-groups (sousdemi-groupes) est géométrique. C. r. Acad. sci., 262(26):A1435–A1437 (1966).MathSciNetGoogle Scholar
  387. 387.
    D. H. Potts, Axioms for semi-lattices. Canad. Math. Bull., 8(4):519 (1965).MathSciNetGoogle Scholar
  388. 388.
    A. Preller, Sur le probléme universel (liberté) des algébres de Boole et des espaces de Boole par rapport aux ensembles. Publ. Dep. Math. (Lyon), 3(1):17–25 (1966).MathSciNetMATHGoogle Scholar
  389. 389.
    A. Preller, Une catégorie duale de la catégorie des anneaux idempotents. Publ. Dep. Math. (Lyon), 3 (1):26–30 (1966).MathSciNetMATHGoogle Scholar
  390. 390.
    O. Pretzel, A representation theorem for partial orders. J. London Math. Soc., 42(3):507–508 (1967).MathSciNetMATHGoogle Scholar
  391. 391.
    F. Previale, Reticoli metrici. Boll. Unione mat. ital., 21(3)243–250 (1966).MathSciNetMATHGoogle Scholar
  392. 392.
    R. Rado, A theorem on chains of finite sets. J. London Math. Soc., 42(1):101–106 (1967).MathSciNetMATHGoogle Scholar
  393. 393.
    A. Ramsay, Dimension theory in complete orthocomplemented weakly modular lattices. Trans. Amer. Math. soc, 116(4):9–31 (1965).MathSciNetMATHGoogle Scholar
  394. 394.
    A. Ramsay, Decompositions of von Neumann lattices. J. Math. Analysis and Applic, 20(3):480–506 (1967).MathSciNetGoogle Scholar
  395. 395.
    P. S. Rema, Generalized metric lattices. I. The Bm-lattices. J. Madras Univ., B33(3):281–288 (1963).MathSciNetGoogle Scholar
  396. 396.
    P. S. Rema, On compact topological lattices. Math. Japonicae, 9(2):93–98 (1964).MathSciNetMATHGoogle Scholar
  397. 397.
    P. S. Rema, On sets lattices and groups with Boolean metrization. Math. Student, 33 (1):29–3l (1965).MathSciNetGoogle Scholar
  398. 398.
    P. S. Rema, Linear-compact congruence topologies in *-lattices. Fundam. math., 57 (1):9–24 (1965).MathSciNetMATHGoogle Scholar
  399. 399.
    P. S. Rema, Auto-topologies in Boolean algebras. J. Indian Math. Soc., 30(4):221–243 (1967).MathSciNetGoogle Scholar
  400. 400.
    R. Righi, Nota sulle funzioni booleane autoduali. Note recens. e notiz., 12(4):321–338 (1963).Google Scholar
  401. 401.
    K. W. Roggenkamp, Gruppenringe von unendlichem Dartellungstyp. Math. Z., 95(5):393–398 (1967).MathSciNetGoogle Scholar
  402. 402.
    H. L. Rolf, The free modular lattice FM (2 + 2 + 2) is infinite. Proc. Amer. Math. Soc., 17(4):960–961 (1966).MathSciNetMATHGoogle Scholar
  403. 403.
    I. Rosenberg, Die transitive Hülle des lexikographischen Produktes. Matemat. asop., 17(2):92–107 (1967).MATHGoogle Scholar
  404. 404.
    G. C. Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrsheinlichkeitstheor. und verw. Geb., 2(4):340–368 (1964).MathSciNetMATHGoogle Scholar
  405. 405.
    S. Rudeanu, Boolean equations and their applications to the study of Bridge-Circuits. I. Bull. math. Soc. sci. math. et phys. RPR, 3(4):445–473 (1959).MathSciNetGoogle Scholar
  406. 406.
    S. Rudeanu, Independent systems of axioms in lattice theory. Bull. math. Soc. sci. math. et phys. RPR, 3(4):475–488 (1959).MathSciNetGoogle Scholar
  407. 407.
    S. Rudeanu, Ecuaiile booleene i aplicaiile for la studiul schemelor în punte. II. Comun. Acad. RPR, 11(6):611–618 (1961).MathSciNetMATHGoogle Scholar
  408. 408.
    S. Rudeanu, Asupra rezolvrii ecuatiilor booleene prin metoda lui Löwenheim. Studii i cercetari mat. Acad. RPR, 13(2):295–308 (1962).MathSciNetMATHGoogle Scholar
  409. 409.
    S. Rudeanu, Asupra unor sisteme de postulate ale algebrelor booleene. Comun. Acad. RPR, 12(8):893–899 (1962).MathSciNetGoogle Scholar
  410. 410.
    S. Rudeanu, Axiomele laticilor i ale algebrelor booleene. Bucuresti. Acad. R.P.R. (1963), 159 pp.Google Scholar
  411. 411.
    S. Rudeanu, Solutions non redondantes des équations booléennes. Bull. math. Soc. sci. math. et phys. RPR, 7(1–2):45–49 (1963).MathSciNetGoogle Scholar
  412. 412.
    S. Rudeanu, Logical dependence of certain chain conditions in lattice theory. Spisy pírodovd. fak. univ. Brn, No. 9, pp. 484–485 (1964).Google Scholar
  413. 413.
    S. Rudeanu, Logical dependence of certain chain conditions in lattice theory. Acta scient. math., 25(3–4):209–218 (1964).MathSciNetMATHGoogle Scholar
  414. 414.
    S. Rudeanu, Remarks on Motinori Goto’s papers on Boolean equations. Rev. Roumaine Math. pures et appl., 10(3):311–317 (1965).MathSciNetMATHGoogle Scholar
  415. 415.
    S. Rudeanu, Irredundant solutions of Boolean and pseudo-Boolean equations. Rev. Roumaine math. pures et appl., 11(2):183–188 (1966).MathSciNetMATHGoogle Scholar
  416. 416.
    S. Rudeanu, Sur les equations booléennes de S. etkovi. Publs. Inst. Math., 6:95–97 (1966).MathSciNetGoogle Scholar
  417. 417.
    M. E. Rudin, Interval topology in subsets of totally orderable spaces. Trans. Amer. Math. Soc., 118(6):376–389 (1965).MathSciNetMATHGoogle Scholar
  418. 418.
    J. Ruedin, Groupoides distributifs et axiomatique des treillis Sémin. Dubreil et Pisot. Fac. sci. Paris, 20 (1):4/01–4/36 (1968).Google Scholar
  419. 419.
    J. Ruedin, Sur les groupoides distributifs agant un élément neutre d’un côté et sur l’axiomatique des treillis. C. r. Acad. sci., 263(17):A559–A562 (1966).MathSciNetGoogle Scholar
  420. 420.
    D. E. Rutherford, Introduction to Lattice Theory, Oliver and Boyd, Edinburgh (1965), 118 pp.MATHGoogle Scholar
  421. 421.
    D. E. Rutherford, Introduction to Lattice Theory, Hafner, New York (1965), 117 pp.MATHGoogle Scholar
  422. 422.
    D. E. Rutherford, Introduction to Lattice Theory, Oliver and Boyd, Edinburgh (1965), 117 pp.MATHGoogle Scholar
  423. 423.
    D. E. Rutherford, The eigenvalue problem for Boolean matrices. Proc. Roy. Soc. Edinburgh, A67 (1):25–38 (1965).MathSciNetGoogle Scholar
  424. 424.
    D. E. Rutherford, Orthogonal Boolean matrices. Proc. Roy. Soc., 67(2):126–135 (1966).MathSciNetMATHGoogle Scholar
  425. 425.
    I. Ruzsa, Über einige Erweiterungen des formalen Systems der elementaren Booleschen Algebra. Ann. Univ. scient. Budapest. Ser. math., 8:163–180 (1965).MathSciNetMATHGoogle Scholar
  426. 426.
    D. Sachs, Reciprocity in matroid lattices. Rend. Semin. mat. Univ. Padova, 36(1):66–79 (1966).MathSciNetMATHGoogle Scholar
  427. 427.
    E. T. Schmidt, Universale Algebren mit gegebenen Automorphismengruppen und Unteralgebrenverbänden. Acta scient. math., 24(3–4):251–254 (1963).MATHGoogle Scholar
  428. 428.
    E. T. Schmidt, Universale Algebren mit gegebenen Automorphismengruppen und Kongruenzverbänden. Acta math. Acad. scient. hung., 15(1–2):37–45 (1964).MATHGoogle Scholar
  429. 429.
    E. T. Schmidt, Remark on a paper of M. F. Janowitz. Acta math. Acad. scient. hung., 16(3–4):435 (1965).MATHGoogle Scholar
  430. 430.
    E. T. Schmidt, Über endliche Verbände, die in einen endlichen Zerlegungsverband einbettbar sind. Studia scient. math. hung., Vol. 1, Nos. 3–4 (1966).Google Scholar
  431. 431.
    E. T. Schmidt, On tne definition of homomorphism kernels of lattices. Math. Nachr., 3(1–2):25–30 (1967).Google Scholar
  432. 432.
    J. Schmidt, Konfinalität. Z. math. Logik und Grundl. Math., 1(4):271–303 (1955).MATHGoogle Scholar
  433. 433.
    P. S. Schnare, Multiple complementation in the lattice of topologies. Fundam. math., 62 (1):53–59 (1968).MathSciNetMATHGoogle Scholar
  434. 434.
    P. S. Schnare, “Infinite complementation in the lattice of topologies,” Doctoral dissertation Tulane Univ. (1967), 62 pp.; Dissert. Abstr., B28(9):3788 (1968).Google Scholar
  435. 435.
    E. A. Schreiner, Modular pairs in orthomodular lattices. Pacif. J. Math., 19(3): 519–528 (1966).MathSciNetMATHGoogle Scholar
  436. 436.
    G. Scognamiglio, Funzioni transcendenti neiralgebra di Boole. Ann. pontifist. super. sci. e lett. “S. Chiara” No. 12, pp. 245–260 (1962).Google Scholar
  437. 437.
    G. Scognamiglio, Estensione della nozione di algebra. Algebre di secondo ordine su un’algebra di Boole. Giorn. mat. Battaglini, 90(1):93–108 (1962).MathSciNetGoogle Scholar
  438. 438.
    G. Scognamiglio, Analisi funzionale neele algebre booleane. Giorn. mat. Battaglini, 90(1):109–137 (1962).MathSciNetGoogle Scholar
  439. 439.
    G. Scognamiglio, Filze di funzioni algebriche booleane e matrici associate. Ricerca, 14:22–35 (Jan.-Apr., 1963).MathSciNetGoogle Scholar
  440. 440.
    G. Scognamiglio, Transformazioni algebriche su variabili booleane (relazioni fra matrici, determinanti ed operatori). Giorn. mat. Battaglini, 91(1):24–55 (1963).MathSciNetGoogle Scholar
  441. 441.
    G. Scognamiglio, Un metodo di calcolo dei prodotti delle matrici booleane elementari. Ann. pontif. Ist. super. sci. e lettere “S. Chiara”, No. 13, pp. 413–429 (1963).Google Scholar
  442. 442.
    V. Sedmak, Geordnete Mengen und zufälligkeitsmass einer Fölge. Spisy píro dovd. fak. univ. Brn, No. 9, pp. 486–487 (1964).Google Scholar
  443. 443.
    B. Segre, Introduction to Galois geometries. Atti Accad. naz. Lincei. Mem. Cl. sci. fis. mat. e natur., Sez. 1, 8(5):133–236 (1967).MathSciNetMATHGoogle Scholar
  444. 444.
    A. Sekanina and M. Sekanina, Topologies compatible with ordering. Arch. mat., 2(3):113–126 (1966).MathSciNetMATHGoogle Scholar
  445. 445.
    M. Sekanina, On ordering of the system of all subsets of a given set. Z. math. Logik und Grundl. Math., 10(4):283–301 (1964).MathSciNetMATHGoogle Scholar
  446. 446.
    M. Sekanina, On the power of ordered sets., Arch. mat., 1(2):75–82 (1965).MathSciNetMATHGoogle Scholar
  447. 447.
    M. Sekanina, “Topologies compatible with ordering,” General Topology and Related Modern Analysis and Algebra, Vol. 2. Prague (1967), pp. 326–329.Google Scholar
  448. 448.
    M. Sekanina and A. Sekanina, Topology compatable with the order. asop. pestov. mat., 91:95–96 (1966).MathSciNetGoogle Scholar
  449. 449.
    M. Servi, Sull’estensione degli operatori de tipo VDD. Rend. Semin. mat. Univ. e Politecn. Torino, 24:125–136 (1966).MathSciNetGoogle Scholar
  450. 450.
    M. Servi, Algebre di Fréchet: una classe di algebre booleane con operatore. Rend. Circolo. mat. Palermo, 14(3):335–366 (1966).MathSciNetGoogle Scholar
  451. 451.
    R. Sikorski, Boolean Algebras, 2nd ed., Springer, Berlin (1964), 237 pp.; Dtsch. Bibliogr. No. 48, p. 4239 (1968).MATHGoogle Scholar
  452. 452.
    F. M. Sioson, On Newman algebras. I, II. Proc. Japan Acad., 41(1):31–39 (1965).MathSciNetMATHGoogle Scholar
  453. 453.
    F. M. Sioson, Natural equational bases for Newman and Boolean algebras. Compositio math., 17(3):299–310 (1966).MathSciNetMATHGoogle Scholar
  454. 454.
    F. M. Sioson, Natural equational bases for Newman and Boolean algebras. Compositio math., 17(3):299–310 (1967).MathSciNetGoogle Scholar
  455. 455.
    L. A. Skornyakov (Skorniakov), Complemented Modular Lattices and Regular Rings, Oliver and Boyd, Edinburg (1964), 182 pp.MATHGoogle Scholar
  456. 456.
    L. Skula, Über Systeme von stetigen und isotonen Abbildungen. Spisy pírodovd. fak. univ. Brn, No. 9, pp. 490–492 (1964).Google Scholar
  457. 457.
    R. E. Smithson, A note on finite Boolean rings. Math. Mag., 37(5):325–327 (1964).MathSciNetMATHGoogle Scholar
  458. 458.
    R. M. Solovay, New proof of a theorem of Gaifman and Hales. Bull. Amer. Math. Soc., 72(2):282–284 (1966).MathSciNetMATHGoogle Scholar
  459. 459.
    A. K. Steiner, The topological complementation problem. Bull. Amer. Math. Soc., (1, Part I):125–127 (1966).MathSciNetGoogle Scholar
  460. 460.
    A. K. Steiner, The lattice of topologies: structure and complementation. Trans. Amer. Math. Soc., 122(2):379–398 (1966).MathSciNetMATHGoogle Scholar
  461. 461.
    A. K. Steiner, Complementation in the lattice of T1-topologies. Proc. Amer. Math. Soc., 17(4):884–886 (1966).MathSciNetMATHGoogle Scholar
  462. 462.
    A. K. Steiner, “Ultraspaces and topological complementation problem,” Doctoral dissertation, Univ. of New Mexico (1965), 57 pp.; Dissert. Abstr., 26(11): 6753–6754 (1966).Google Scholar
  463. 463.
    A. K. Steiner and E. F. Steiner A T1-complement for the reals. Proc. Amer. Math. Soc., 19(1):177–179 (1968).MathSciNetMATHGoogle Scholar
  464. 464.
    E. F. Steiner, “Lattices of topologies on linear spaces,” Doctoral dissertation, Univ. of Missouri (1963), 85 pp.; Dissert. Abstr., 24(3):1193 (1963).Google Scholar
  465. 465.
    E. F. Steiner, Lattice of linear topologies. Port. math., 23(3–4):173–181 (1964).MathSciNetMATHGoogle Scholar
  466. 466.
    E. F. Steiner, Lattices of normed topologies. Port. math., 24(1–2):7–12 (1965).MathSciNetMATHGoogle Scholar
  467. 467.
    E. F. Steiner and A. K. Steiner, Topologies with T1-complements. Fundam. math., 61(1):23–28 (1967).MathSciNetMATHGoogle Scholar
  468. 468.
    O. Steinfeld, Über Zerlegungssätze für teilweise geordneten Halbgruppen mit bedingten Distributivitätsregeln. Magyar. tud. akad. Mat. Kutató int. közl., 9(3):313–330 (1965).MathSciNetMATHGoogle Scholar
  469. 469.
    D. P. Strauss, Topological lattices. Proc. London Math. Soc., 18(2):217–230 (1968).MATHGoogle Scholar
  470. 470.
    T. Sturm, Isotonii rozšíeni isotonnich zobrazeni. asop. pstov. mat., 92(3): 318–331 (1967).MathSciNetMATHGoogle Scholar
  471. 471.
    N. V. Subrahmanyam, Boolean vector spaces. II. Math. Z., 87(3):401–419 (1965).MathSciNetMATHGoogle Scholar
  472. 472.
    K. L. N. Swamy, A general theory of autometrized algebras. Math. Ann., 157(1): 65–74 (1964).MathSciNetMATHGoogle Scholar
  473. 473.
    G. Szász, On independent systems of axioms for lattices. Publs. math., 10(1–4): 108–115 (1963).Google Scholar
  474. 474.
    G. Szász, Über einige Axiomensysteme der Verbände. Spisy pírodovd. fak. univ. Brn, No. 9, p. 493 (1964).Google Scholar
  475. 475.
    T. Tamura and W. Etterbeek, The lattice congruences of locally cyclic semigroups. Proc. Japan Acad., 42(7):682–684 (1966).MathSciNetMATHGoogle Scholar
  476. 476.
    D. M. Topping, Some homological pathology in vector lattices. Canad. J. Math., 17(3):4H–428 (1965).MathSciNetGoogle Scholar
  477. 477.
    T. Traczyk, Axioms and some properties of Post algebras. Colloq. math., 10(2): 193–209 (1963).MathSciNetMATHGoogle Scholar
  478. 478.
    T. Traczyk, An equational definition of a class of Post algebras. Bull. Acad. polon, sci. Sér. sci. math., astron. et phys., 12(3):147–149 (1964).MathSciNetMATHGoogle Scholar
  479. 479.
    T. Traczyk, A generalization of the Loomis-Sikorski theorem. Colloq. math., 12(2):155–161 (1964).MathSciNetMATHGoogle Scholar
  480. 480.
    S. S. Van Domelen, The structure of bounded commutative semisimple cones. Doct. dissert. Univ. New Mex., 1965, 47 pp. Dissert. Abstr., 26(11):6755 (1966).Google Scholar
  481. 481.
    J. Varlet, Contribution à l’étude des treillies pseudo-complémentés et des treillis de Stone. Mém. Soc. roy. scil Liège, Vol. 8, No. 4 (1963), 71 pp.MathSciNetGoogle Scholar
  482. 482.
    J. Varlet, Congruences dans les treillis pseudo-compléments. Bull. Soc. roy. sci. Liège, 32(9):623–625 (1963).MathSciNetMATHGoogle Scholar
  483. 483.
    J. Varlet, Indéaux dans les lattis pseudo-complémentés. Bull. Soc. roy. sci. Liège, 33(3–4):143–150 (1964).MathSciNetMATHGoogle Scholar
  484. 484.
    J. Varlet, Congruences dans les demi-lattis. Bull. Soc. roy. sci. Liège, 34(5–6): 231–240 (1965).MathSciNetMATHGoogle Scholar
  485. 485.
    J. Varlet, On the characterization of Stone lattices. Acta scient. math., 27(1–2): 81–84 (1966).MathSciNetMATHGoogle Scholar
  486. 486.
    P. V. Venkatanarasimhan, A note on modular lattices. J. Indian Math. Soc., 30(1):55–59 (1966).MathSciNetGoogle Scholar
  487. 487.
    P. V. Venkatanarasimhan, Ideals in semi-lattices. J. Indian Math. Soc., 30(1): 47–53 (1966).MathSciNetGoogle Scholar
  488. 488.
    J.-L. Verdier, Equivalence essentielle des systèmes projectifs. C. r. Acad. sci., 261(23):4950–4953 (1965).MathSciNetMATHGoogle Scholar
  489. 489.
    J. H. Weston “Some results concerning m-compactness,” Doctoral dissertation, Lehigh Univ. (1967), 55 pp.; Dissert. Abstr., B28(10):4211 (1968).Google Scholar
  490. 490.
    R. Wille, Halbkomplementäre Verbände. Math. Z., 94(1):1–31 (1966).MathSciNetMATHGoogle Scholar
  491. 491.
    R. Wille, Verbandstheoretische Charakterisierung n-stufiger Geometrien. Arch. Math., 18(5):465–468 (1967).MathSciNetMATHGoogle Scholar
  492. 492.
    J. S. W. Wong, Common fixed points of commuting monotone mappings. Canad. J. Math., 19(3):617–620 (1967).MathSciNetMATHGoogle Scholar
  493. 493.
    A. C. Woods, A note on dense subsets of lattices. J. London Math. Soc., 41(4): 742–744 (1966).MathSciNetMATHGoogle Scholar
  494. 494.
    Y. Wooyenaka, On postulates sets for Newman algebra and Boolean algebra. I, II. Proc. Japan Acad., 40(2):76–87 (1964).MathSciNetGoogle Scholar
  495. 495.
    F. B. Wright, Boolean averages. Canad. J. Math., 15(3):440–455 (1963).MATHGoogle Scholar
  496. 496.
    F. Wuytack, Boolean composition algebras. Simon Stevin, 37(3):97–125 (1964).MathSciNetMATHGoogle Scholar
  497. 497.
    O. Wyler, Clans. Compositio math., 17(2):172–189 (1966).MATHGoogle Scholar
  498. 498.
    B. Zelinka, Dukaz nezavislosti Birkhoffova systemu postulatu pro distributivni svazy s jednotkovym prvkem. Casop. pestov. mat., 91(4):472–477 (1966).MathSciNetMATHGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • M. M. Glukhov
  • I. V. Stelletskii
  • T. S. Fofanova

There are no affiliations available

Personalised recommendations