Advertisement

Modules

  • A. V. Mikhalev
  • L. A. Skornyakov
Part of the Progress in Mathematics book series (PM, volume 12)

Abstract

In the present article we consider the papers on the theory of modules reviewed in the Mathematics section of Referativnyi Zhurnal during 1966–1968. Unless we specify otherwise all the modules to be considered in the survey are taken to be left and and unitary. Therefore, as a rule we shall set forth the left-sided versions of the results regardless of which version was chosen by the author or by the reviewer. When we speak of work which has already been mentioned in previous issues of “Itogi Nauki” (Progress in Mathematics), we shall make reference to these issues.

Keywords

Local Ring Commutative Ring Left Ideal Projective Module Noetherian Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    V. A. Andrunakievich, V. I. Arnautov, and Yu. M. Ryabukhin, “Rings,”in: R. V. Gamkrelidze (Ed.), Progress in Mathematics, Vol. 5: Algebra, Plenum Press, New York (1969), pp. 127–177.Google Scholar
  2. 2.
    V. A. Andrunakievich and Yu. M. Ryabukhin, “On the additive theory of ideals in rings, modules, and groupoids,”Dokl. Akad. Nauk SSSR, 168(3):495–498 (1966).MathSciNetGoogle Scholar
  3. 3.
    Z. I. Borevich and D. K. Faddeev, “A remark on orders with a cyclic index,”Dokl. Akad. Nauk SSSR, 164(4):727–728 (1965).MathSciNetGoogle Scholar
  4. 4.
    Z. I. Borevich and D. K. Faddeev, “Representations of orders with a cyclic index,”Tr. Mat. Inst. Akad. Nauk SSSR, 80:51–65 (1965).Google Scholar
  5. 5.
    B. B. Venkov, “Homological algebra,”in: Algebra, 1964 [in Russian], Science Summaries, VINITI, Akad. Nauk SSSR, Moscow (1966), pp. 203–235.Google Scholar
  6. 6.
    R. T. Vol’vachev, “Elementary theory of modules,”Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 4, 7–12 (1967).Google Scholar
  7. 7.
    V. I. Gemintern, “Semiprimary rings with an atomic structure of left ideals,”Sibirsk. Mat. Zh., 8(4):947–95l (1967).MathSciNetGoogle Scholar
  8. 8.
    L. M. Gluskin, “Endomorphisms of modules,”in: Algebra and Mathematical Logic [in Russian], Kiev Univ., Kiev (1966), pp. 3–20.Google Scholar
  9. 9.
    V. E. Govorov, “Derived radicals of modules,”Mat. Zametki, 3(6):633–642 (1968).MathSciNetMATHGoogle Scholar
  10. 10.
    E. L. Gorbachuk, “Splittability of torsion and pretorsion in the category of right -modules,”Mat. Zametki, 2(6):681–688 (1967).MathSciNetMATHGoogle Scholar
  11. 11.
    P. M. Gudivok, “Representations of finite groups over number rings,”Izv. Akad. Nauk SSSR, Ser. Mat., 31(4):799–834 (1967).MathSciNetGoogle Scholar
  12. 12.
    Yu. A. Drozd and V. V. Kirichenko, “Hereditary orders,”Ukrainsk. Mat. Zh., 20(2):246–248 (1968).MATHGoogle Scholar
  13. 13.
    Yu. A. Drozd, V. V. Kirichenko, and A. V. Roiter, “Hereditary and Bass orders,”Izv. Akad. Nauk SSSR, Ser. Mat., 31:1415–1436 (1967).MathSciNetMATHGoogle Scholar
  14. 14.
    Yu. A. Drozd and A. V. Roiter, “Commutative rings with a finite number of indecomposable integral representations,”Izv. Akad. Nauk SSSR, Ser. Mat., 31(4):783–798 (1967).MathSciNetMATHGoogle Scholar
  15. 15.
    Yu. A. Drozd and V. M. Turchin, “The number of modules of representations in genus for second-order integral matrix rings,”Mat. Zametki, 2(2):133–138 (1967).MathSciNetMATHGoogle Scholar
  16. 16.
    V. P. Elizarov, “Nonsingularly dimensional rings,”Sibirsk. Mat. Zh., 6(5):1181–1184 (1965).MathSciNetMATHGoogle Scholar
  17. 17.
    V. P. Elizarov, “Quotient modules,”Sibirstk. Mat. Zh., 7(1):221–226 (1966).MathSciNetMATHGoogle Scholar
  18. 18.
    V. P. Elizarov, “Flat extensions of rings,”Dokl. Akad. Nauk SSSR, 175(4):759–761 (1967).MathSciNetGoogle Scholar
  19. 19.
    M. Kol’p, “Growth rings,”Sibirsk. Mat. Zh., 8(5):1193–1196 (1967).Google Scholar
  20. 20.
    V. V. Kirichenko, “Orders all of whose representations are completely decomposable,”Mat. Zametki, 2(2):139–144 (1967).MathSciNetGoogle Scholar
  21. 21.
    L. A. Coifman, “A radical of a module,”Sibirsk. Mat. Zh., 7(5):1204–1207 (1966).Google Scholar
  22. 22.
    V. I. Kuz’minov, “Derived functors of a projective limit,”Sibirsk. Mat. Zh., 8(2):333–345 (1967).MathSciNetMATHGoogle Scholar
  23. 23.
    C. W. Curtis and I. Reiner, Theory of Representations of Finite Groups and of Associative Algebras [Russian translation], Nauka, Moscow (1969), 668 pp.Google Scholar
  24. 24.
    E. M. Levich, “Modules over the ring of polynomials in one endomorphism,”Latvian Math. Annual, Vol. 2 [in Russian], Riga (1966), pp. 127–174.MATHGoogle Scholar
  25. 25.
    S. A. Lang, Algebra [Russian translation], “Mir,”Moscow (1968), 564 pp.MATHGoogle Scholar
  26. 26.
    S. MacLane, Homology [Russian translation], “Mir,”Moscow (1966), 543 pp.MATHGoogle Scholar
  27. 27.
    A. P. Mishina and L. A. Skornyakov, Abelian Groups and Modules [in Russian], “Nauka,”Moscow (1969), 151 pp.MATHGoogle Scholar
  28. 28.
    A. V. Mikhalev, “Isomorphisms of endomorphism semigroups of modules,”Algebra i Logika. Seminar, 5(5):59–67 (1966).MATHGoogle Scholar
  29. 29.
    A. V. Mikhalev, “Isomorphisms of endomorphism semigroups of modules. II,”Algebra i Lokika. Seminar, 6(2):35–47 (1967).MathSciNetMATHGoogle Scholar
  30. 30.
    L. A. Nazarova and A. V. Roiter, “Refinement of a theorem of Bass,”Dokl. Akad. Nauk SSSR, 176(2):266–268 (1967).MathSciNetGoogle Scholar
  31. 31.
    B. I. Plotkin, “Certain aspects of the general theory of group representations,” Izv. Akad. Nauk SSSR, Ser. Mat., 27(4):855–882 (1963).MathSciNetMATHGoogle Scholar
  32. 32.
    I. S. Ponizovskii, “The Frobeniusness of the semigroup algebra of a finite commutative semigroup,” Izv. Akad. Nauk SSSR, Ser. Mat., 32(4):820–836 (1968).MathSciNetGoogle Scholar
  33. 33.
    A. V. Roiter, “Analog of a theorem by Bass for the modules of representations of noncommutative orders,” Dokl. Akad. Nauk SSSR, 168(6):1261–1264 (1966).MathSciNetGoogle Scholar
  34. 34.
    A. V. Roiter, “Integral representations belonging to one genus,” Izv. Akad. Nauk SSSR, Ser. Mat., 30(6):1315–1324 (1966).MathSciNetGoogle Scholar
  35. 35.
    B. M. Rudyk, “Extensions of modules,” Dokl. Akad. Nauk SSSR, 179(3):545–547 (1968).MathSciNetGoogle Scholar
  36. 36.
    Yu. M. Ryabukhin, “Radicals in categories,” in: Mathematical Researches, Vol. 2, No. 3 [in Russian], Kishinev (1967), pp. 107–165.MATHGoogle Scholar
  37. 37.
    I. I. Sakhaev, “Exactness of functors,” Izv. Vyssh. Uchebn. Zavedenii. Matematika, No. 4, 104–108 (1966).Google Scholar
  38. 38.
    J.-P. Serre, “Local algebra and the theory of multiplicities,” Period. Sb. Perev. Statei, 7(5):3–93 (1963).Google Scholar
  39. 39.
    L. A. Skornyakov, “Rings,” in: Algebra. Topology. 1962 [in Russian], Science Summaries, VINITI, Akad. Nauk SSSR, Moscow (1963), pp. 59–79.Google Scholar
  40. 40.
    L. A. Skornyakov, “Modules,” in: Algebra. Topology. 1962 [in Russian], Science Summaries, VINITI, Akad. Nauk SSSR, Moscow (1963), pp. 80–89.Google Scholar
  41. 41.
    L. A. Skornyakov, “Cohn rings,” Algebra i Logika. Seminar, 4(3):5–30 (1965).MATHGoogle Scholar
  42. 42.
    L. A. Skornyakov, “Modules,” in: R. V. Gamkrelidze (Ed.), Progress in Mathematics. Vol. 5: Algebra, Plenum Press, New York - London (1969), pp. 179–214.Google Scholar
  43. 43.
    L. A. Skornyakov, “Elizarov quotient ring and the localization principle,” Mat. Zametki, 1(3):263–268 (1967).MathSciNetMATHGoogle Scholar
  44. 44.
    L. A. Skornyakov, “Lectures on homological algebra,” Mat. Vesn., 5(1):71–113 (1968).Google Scholar
  45. 45.
    L. A. Skornyakov, “Homological classification of rings,” Mat. Vesn., 4(4):415–434 (1967).Google Scholar
  46. 46.
    T. S. Tol’skaya, “Injection and freedom,” Sibirsk. Mat. Zh., 6(5):1202–1207 (1965).MATHGoogle Scholar
  47. 47.
    D. K. Faddeev, “Introduction to the multiplicative theory of modules of integral representations,” Tr. Mat. Inst. Akad. Nauk SSSR, 80:145–182 (1965).MathSciNetMATHGoogle Scholar
  48. 48.
    D. K. Faddeev, “On the theory of cubic Z-rings,” Tr. Mat. Inst. Akad. Nauk SSSR, 80:183–187 (1965).MathSciNetMATHGoogle Scholar
  49. 49.
    V. G. Fayans, “Endomorphisms of ordered linear spaces,” Herzen Lectures, XIX, Math. [in Russian], Leningrad. Gos. Ped. Inst., Leningrad (1966), pp. 10–12.Google Scholar
  50. 50.
    V. G. Fayans, “Endomorphism semigroups of ordered linear spaces,” Uch. Zap. Leningrad. Gos. Ped. Inst. im. A. I. Gertsen [Herzen], 302:124–141 (1967).Google Scholar
  51. 51.
    G. M. Tsukerman, “Endomorphism rings of free modules,” Sibirsk. Mat. Zh., 7(5):1161–1167 (1966).Google Scholar
  52. 52.
    T. Akiba, Remarks on generalized rings of quotients. Proc. Japan Acad., 40(10): 801–806 (1964).MathSciNetMATHGoogle Scholar
  53. 53.
    T. Akiba, Remarks on generalized rings of quotients. II. J. Math. Kyoto Univ., 5 (1):39–44 (1965).MathSciNetMATHGoogle Scholar
  54. 54.
    J. S. Alin, “Structure of torsion modules,” Doctoral dissertation, Univ. of Nebraska, (1967), 59 pp.; Dissert. Abstr., B28(7):2925–2926 (1968).Google Scholar
  55. 55.
    J. S. Alin and S. E. Dickson, Goldie’s torsion theory and its derived functor. Pacif. J. Math., 24(2):195–203 (1968).MathSciNetMATHGoogle Scholar
  56. 56.
    A. P. Andrews, Modules over a one-dimensional Noetherian ring. Quart. J. Math., 18(69):65–80 (1967).MATHGoogle Scholar
  57. 57.
    J. T. Arnold and R. Gilmer, Idempotent ideals and unions of nets of Prüfer do mains. J. Sci. Hiroshima Univ., Ser. A, Div. 1, 31(2):131–145 (1967).MathSciNetMATHGoogle Scholar
  58. 58.
    M. Auslander, Remarks on a theorem of Bourbaki, Nagoya Math. J., 27 (1):361–369 (1966).MathSciNetMATHGoogle Scholar
  59. 59.
    G. Azumaya, Completely faithful modules and self-injective rings. Nagoya Math. J., 27(2):697–708 (1966).MathSciNetMATHGoogle Scholar
  60. 60.
    A. C. Baker, Systems of linear equations over a topological module. Quart. J. Math., 15(60):327–336 (1964).MATHGoogle Scholar
  61. 61.
    S. Balcerzyk, The global dimension of the group rings of Abelian groups. Fundam. math., 55(3):293–301 (1964).MathSciNetGoogle Scholar
  62. 62.
    S. Balcerzyk, The global dimension of the group rings of Abelian groups. II. Fundam. math., 58(1):67–73 (1966).MathSciNetMATHGoogle Scholar
  63. 63.
    S. Balcerzyk, On projective dimension of direct limit of modules. Bull. Acad. Polon. sci. Sér. math., astron. et phys., 14(5):241–244 (1966).MathSciNetMATHGoogle Scholar
  64. 64.
    S. Balcerzyk, On functors and Hom . Bull. Acad. polon. sci. Sér. sci. math., astron. et phys., 15(4):235–238 (1967).MathSciNetMATHGoogle Scholar
  65. 65.
    B. Ballet, Idéaux maximaux associés a un module artinien. C. r. Acad. sci., 263(21):A758–A76l (1966).MathSciNetGoogle Scholar
  66. 66.
    B. Ballet, Structure des modules artiniens (cas commutatif). C. r. Acad. sci., 266(1):A1–A4 (1968).MathSciNetGoogle Scholar
  67. 67.
    B. Banaschewski, On coverings of modules. Math. Nachr., 31(1–2):57–71 (1966).MathSciNetMATHGoogle Scholar
  68. 68.
    B. Banaschewski, On the injective hulls of cyclic modules over Dedekind domains. Canad. Math. Bull., 9(2):183–186 (1966).MathSciNetMATHGoogle Scholar
  69. 69.
    H. Bass, Finistic dimensions and a homological generalisation of semi-primary rings. Trans. Amer. Math. Soc. 95(3):466–488 (1960).MathSciNetMATHGoogle Scholar
  70. 70.
    H. Bass, Torsion free and projective modules. Trans. Amer. Math. Soc., 102(2): 319–327 (1962).MathSciNetMATHGoogle Scholar
  71. 71.
    H. Bass, On the ubiquity of Gorenstein rings. Math. Z., 82 (1):8–28 (1963).MathSciNetMATHGoogle Scholar
  72. 72.
    H. Bass, Anneaux de Gorenstein. Sémin. Dubreil et Pisot. Fac. Sci. Paris, 16(1): 5/01–5/08 (1967).MathSciNetGoogle Scholar
  73. 73.
    K. Baumgartner, Bemerkungen zum Isomorphieproblem der Ringe. Monatsh.Google Scholar
  74. 74.
    H. B. Beckwith, “On trace for modules with applications to algebras,” Doctoral. dissertation, Univ. California, San Diego (1967), 68 pp.; Dissert. Abstr., B28(7): 2926 (1968).Google Scholar
  75. 75.
    J. C. Beidleman, A radical for near-ring modules. Mich. Math. J., l2(3):377–383 (1965).MathSciNetMATHGoogle Scholar
  76. 76.
    J. D. Beidleman, “On near-rings and near-ring modules,” Doctoral, dissertation., Pennsylvania State Univ. (1964), 178 pp.; Dissert. Abstr., 25(8):4616–4617 (1965).Google Scholar
  77. 77.
    J. C. Beidleman, Strictly prime distributívely generated near-rings. Math. Z., 100(2):97–105 (1967).MathSciNetMATHGoogle Scholar
  78. 78.
    P. R. Bongale, Filtered Frobenius algebras. Math. Z., 97(4):320–325 (1967).MathSciNetMATHGoogle Scholar
  79. 79.
    P. R. Bongale, Filtered Frobenius algebras. II. J. Algebra, 9 (1):79–93 (1968).MathSciNetMATHGoogle Scholar
  80. 80.
    P. R. Bongale, Filtered Quasi-Frobenius rings. Math. Z., 106(3):191–196 (1968).MathSciNetMATHGoogle Scholar
  81. 81.
    M.-P. Brameret, “Largeurs d’anneaux et de modules,” Doctoral dissertation, Univ. Paris (1965), 106 pp.Google Scholar
  82. 82.
    J. Brandenburg, “Über die Rechtsderivierten des inversen Limes von Modul- und Gruppenfamilien,” Doctoral dissertation, Friedrich Wilhelms-Univ., Bonn; Bonn math. Schr., Vol. 11, No. 27 (1967), 65 pp.MATHGoogle Scholar
  83. 83.
    J. O. Brooks, “Classification of representation modules over quadratic orders,” Doctoral dissertation, Univ. Michigan (1964), 64 pp.; Dissert. Abstr., 25(2, Part l):7287–7288 (1965).Google Scholar
  84. 84.
    A. Brumer, Pseudocompact algebras, profinite groups and class formations. J. Algebra, 4(3):442–470 (1966).MathSciNetMATHGoogle Scholar
  85. 85.
    A. Brumer, Pseudocompact algebras, profinite groups and class formation. Bull. Amer. Math. Soc., 72(2):321–324 (1966).MathSciNetMATHGoogle Scholar
  86. 86.
    D. A. Buchsbaum, A note on homology in categories. Ann. Math., 69(1):66–74 (1959).MathSciNetMATHGoogle Scholar
  87. 87.
    L. Budach, Zum Begriff des Mod-ulquotienten. Monatsber. Dtsch. Akad. Wiss. Berlin, 6(2):81–85 (1964).MathSciNetMATHGoogle Scholar
  88. 88.
    R. T. Bumby, Modules which are isomorphic to submodules of each other. Arch. Math., 16(3):184–185 (1965).MathSciNetMATHGoogle Scholar
  89. 89.
    L. Burch, A note on ideals of homological dimension one in local domains. Proc. Cambridge Philos. Soc., 63(3):661–662 (1967).MathSciNetMATHGoogle Scholar
  90. 90.
    M. C. R. Butler, Torsion-free modules and diagrams of vector spaces. Proc. London Math. Soc., 18(4):635–652 (1968).MathSciNetMATHGoogle Scholar
  91. 91.
    M. C. R. Butler and G. Horrocks, Classes of extensions and resolutions. Phil. Trans. Royal. Soc. London, 254:155–202 (1961).MathSciNetMATHGoogle Scholar
  92. 92.
    H. S. Butts and W. Smith, Prüfer rings. Math. Z., 95(3):196–211 (1967).MathSciNetMATHGoogle Scholar
  93. 93.
    H. S. Butts and L. I. Wade, Two criteria for Dedekind domains. Amer. Math. Monthly, 73(1):14–21 (1966).MathSciNetMATHGoogle Scholar
  94. 94.
    W. H. Caldwell, “Rings for which cyclic modules have cyclic injective hulls,” Doctoral Dissertion, Rutgers State Univ. (1966), 60 pp.; Dissert. Abstrs., B27(6):2015 (1966).Google Scholar
  95. 95.
    W. H. Caldwell, Hypercyclic rings. Pacif. J. Math., 24 (1):29–44 (1968).MathSciNetMATHGoogle Scholar
  96. 96.
    D. W. Cassel, “Rings over which projective modules are free,” Doctoral dissertation, Syracuse Univ. (1967), 81 pp.; Dissert. Abstr., B28(4):1607–1608 (1967).Google Scholar
  97. 97.
    J.-Y. Chamard, Modules riches en co-irréductibles et sousmodules compléments. C. r. Acad. sci., 264(23):A987–A990 (1967).MathSciNetGoogle Scholar
  98. 98.
    R. E. Chandler and K. Koh, Applications of a function topology on rings with unit. Ill. J. Math. 11(4):580–585 (1967).MathSciNetMATHGoogle Scholar
  99. 99.
    N. Chaptal, Sur les modules quasi-injectifs. C. R. acad. sci., 264(4):A173–A175 (1966).MathSciNetGoogle Scholar
  100. 100.
    A.Charnow, Extension of the ground fields in a k[X1, ...,Xn] module. J. London Math. Soc., 41(3):425–432 (1966).MathSciNetMATHGoogle Scholar
  101. 101.
    S. U. Chase, Direct products of modules. Trans. Amer. Math. Soc., 97(3):457–473 (1960).MathSciNetGoogle Scholar
  102. 102.
    K.-L. Chew, “Extensions of rings and modules,” Doctoral dissertation, Univ. Brit. Columbia (1965), 129 pp.; Dissert. Abstr., 26(8):4681 (1966).Google Scholar
  103. 103.
    B.-S. Chwe, Relative homological algebra and homological dimension of Lie algebras. Trans. Amer. Math. Soc., 117(5):477–493 (1965).MathSciNetMATHGoogle Scholar
  104. 104.
    W. E. Clark, Algebras of global dimension one with a finite ideal lattice. Pacif. J. Math., 23(3):463–471 (1967).MATHGoogle Scholar
  105. 105.
    W. E. Clark, A note on semiprimary PP-rings. Osaka J. Math., 4(1):177–178 (1967).MathSciNetMATHGoogle Scholar
  106. 106.
    P. M. Cohn, On the free product of associative rings. Math. Z., 71(4):380–398 (1959).MathSciNetMATHGoogle Scholar
  107. 107.
    P. M. Cohn, Factorization in non-commutative power series rings. Proc. Cambridge Philos. Soc., 58(3):452–464 (1962).MathSciNetMATHGoogle Scholar
  108. 108.
    P. M. Cohn, Free ideal rings. J. Algebra, 1(1):47–49 (1964).MATHGoogle Scholar
  109. 109.
    P. M. Cohn, Sur une classe d’anneaux héréditaires. Sémin. Dubreil et Pisot. Fac Sci. Paris, 19 (1):7/01–7/05 (1967).Google Scholar
  110. 110.
    P. M. Cohn, A remark on matrix rings over free ideal rings. Proc. Cambridge Philos. Soc., 62 (1):1–4 (1966).MathSciNetMATHGoogle Scholar
  111. 111.
    P. M. Cohn, Hereditary local rings. Nagoya Math. J., 27 (1):223–230 (1966).MathSciNetMATHGoogle Scholar
  112. 112.
    P. M. Cohn, Some remarks on the invariant basis property. Topology, 5(3):215–228 (1966).MathSciNetMATHGoogle Scholar
  113. 113.
    P. M. Cohn, On the free product of associative rings. III. J. Algebra, 8(3):376–383 (1968).MathSciNetMATHGoogle Scholar
  114. 114.
    R. R. Colby, “On indecomposable modules over rings with minimum condition,” Doctoral dissertation, Univ. of Washington (1965), 55 pp.; Dissert. Abstr., 26(2): 1059 (1965).Google Scholar
  115. 115.
    R. R. Colby, On indecomposable modules over rings with minimum condition. Pacif. J. Math., 19 (1):23–33 (1966).MathSciNetMATHGoogle Scholar
  116. 116.
    R. R. Colby and E. A. Rutter, Semi-primary QF-3 rings. Nagoya Math. J., 32:253–258 (June, 1968).MathSciNetMATHGoogle Scholar
  117. 117.
    R. C. Courter, The maximal co-rational extension by a module. Canad. J. Math., l8(5):953–962 (1966).MathSciNetMATHGoogle Scholar
  118. 118.
    J. Dauns, Chains of modules with completely reducible quotients. Pacif. J. Math., 17(2):235–242 (1966).MathSciNetMATHGoogle Scholar
  119. 119.
    F. R. DeMeyer, The trace map and separable algebras. Osaka J. Math., 3(1):7–11 (1966).MathSciNetMATHGoogle Scholar
  120. 120.
    R. Desq, Sous-modules isotypiques et sous-modules tertiaires d’un module. Sémin. Dubreil et Pisot. Fac. Sci. Paris, 17(2):25/01–25/l3 (1967).Google Scholar
  121. 121.
    S. E. Dickson, Decomposition of modules. I. Classical rings. Math. Z., 90(1): 9–13 (1965).MATHGoogle Scholar
  122. 122.
    S. E. Dickson, A torsion theory for Abelian categories. Trans. Amer. Math. Soc., 121(1):223–235 (1966).MathSciNetMATHGoogle Scholar
  123. 123.
    S. E. Dickson, Noetherian splitting rings are Artinian. J. London Math. Soc., 42(4):732–736 (1967).MathSciNetMATHGoogle Scholar
  124. 124.
    S. E. Dickson, Decomposition of modules. II. Rings without chain conditions. Math. Z., 104(5):349–357 (1968).MathSciNetMATHGoogle Scholar
  125. 125.
    S. E. Dickson, Direct Decomposition of Radicals, Proc. Conf. Categorical Algebra, La Jolla, Calif., 1965, Springer, New York (1966), pp. 366–374.Google Scholar
  126. 126.
    V. Dlab, On the dependence relation over modules (Prelim, commun.), Comment. math. Univ. Carolinae, 6(1):115–117 (1965).MathSciNetMATHGoogle Scholar
  127. 127.
    V. Dlab, Dependence over modules. Czech. Math. J., 16(1):137–157 (1966).MathSciNetGoogle Scholar
  128. 128.
    V. Dlab, The concept of rank and some related questions in the theory of modules. Comment. Math. Univ. Carolinae, 8(1):39–47 (1967).MathSciNetMATHGoogle Scholar
  129. 129.
    S. Eilenberg and J. C. Moore, Foundations of relative homological algebra. Mem. Amer. Math. Soc., No. 55 (1965), 39 pp.MathSciNetGoogle Scholar
  130. 130.
    G. Eisenreich, Eine Dualitätsbeziehung zwischen S-Moduln. Math. Nachr., 34(5–6):351–359 (1967).MathSciNetMATHGoogle Scholar
  131. 131.
    S. Endo, Projective modules over polynomial rings. J. Math. Soc. Japan, 15(3): 339–352 (1963).MathSciNetMATHGoogle Scholar
  132. 132.
    S. Endo, Completely faithful modules and quasi-Frobenius algebras. J. Math. Soc. Japan, 19(4):437–456 (1967).MathSciNetMATHGoogle Scholar
  133. 133.
    S. Endo and Y. Watanabe, On separable algebras over a commutative ring. Osaka J. Math., 4(2):233–242 (1967).MathSciNetMATHGoogle Scholar
  134. 134.
    C. Faith, Rings with ascending condition on annihilators. Nagoya Math. J., 27(1):179–191 (1966).MathSciNetMATHGoogle Scholar
  135. 135.
    C. Faith, On Köthe rings. Math. Ann., 164(3):207–212 (1966).MathSciNetMATHGoogle Scholar
  136. 136.
    C. Faith, A general Wedderburn theorem. Bull. Amer. Math. Soc., 73 (1):65–67 (1967).MathSciNetMATHGoogle Scholar
  137. 137.
    C. Faith, Lectures on Injective Modules and Quotient Rings (1967).MATHGoogle Scholar
  138. 138.
    C. Faith and E. A. Walker, Direct-sum representations of injective modules. J. Algebra, 5(2):203–221 (1967).MathSciNetMATHGoogle Scholar
  139. 139.
    E. H. Feller, A type of quasi-Frobeni us ring. Canad. Math. Bull., 10(1):19–27 (1967).MathSciNetMATHGoogle Scholar
  140. 140.
    E. H. Feller and E. W. Swokowski, Prime modules. Canad. J. Math., 17(6):1041–1052 (1965).MathSciNetMATHGoogle Scholar
  141. 141.
    E. H. Feller and E. W. Swokowski, Semi-prime modules. Canad. J. Math., 18(4): 823–831 (1966).MathSciNetMATHGoogle Scholar
  142. 142.
    D. Ferrand, Sur les modules qui sont limite projective de leurs localisés. C. r. Acad. sci., AB262(11):A609–A611 (1966).MathSciNetGoogle Scholar
  143. 143.
    D. Ferrand, Epimorphismes d’anneaux et algebres séparables. C. r. Acad. sci., 265(15):A411–A414 (1967).MathSciNetGoogle Scholar
  144. 144.
    M. Flamant, Indice d’une forme quadratique définie sur un module projectif de rang fini sur un anneau de Dedekind. C. r. Acad. sci., 261 (18):3513–3515 (1965).MathSciNetMATHGoogle Scholar
  145. 145.
    I. Fleischer, A new construction of the injective hull. Canad. Math. Bull., 11(1): 19–21 (1968).MathSciNetMATHGoogle Scholar
  146. 146.
    J. Fort, Contribution a l’étude des éléments tertiaires et isotypiques dans les modules et les L-algebres. Bull. Soc. math. France, Vol. 92, no. 1, suppl., 99 pp. (1964).MathSciNetGoogle Scholar
  147. 147.
    J. Fort, Sommes directes de sous-modules co-irreductibles d’un module. C. r. Acad. sci., A262(22):1239–1242 (1966).MathSciNetGoogle Scholar
  148. 148.
    J. Forth, Sommes directes de sous-modules co-irréductibles d’un module. Math. Z., 103(5):363–388 (1968).MathSciNetGoogle Scholar
  149. 149.
    P. Freyd, Abelian Categories. An Introduction to the Theory of Functors, Harper, New York (1964), 164 pp.MATHGoogle Scholar
  150. 150.
    A. Fröhlich, Invariants for modules over commutative separable orders. Quart. J. Math., 16(63):193–232 (1965).MATHGoogle Scholar
  151. 151.
    K. R. Fuller, “On the structure of QF-2 and QF-3 rings,” Doctoral dissertation Univ. Oregon (1967), 85 pp.; Dissert. Abstr., B28(6):2518 (1967).Google Scholar
  152. 152.
    P. Gabriel and U. Oberst, Spectralkategorien und reguläre Ringe in von-Neumann-schen Sinn. Math. Z., 92:389–395 (1966).MathSciNetMATHGoogle Scholar
  153. 153.
    A. Gailleau, Anneau associé a un module injectif riche en co-irréductibles. C. r. Acad. sci., 264(24):A1040–A1042 (1967).Google Scholar
  154. 154.
    A. Gailleau, Anneau associé a un module injectif riche en co-irréductibles. Sémin. Dubreil et Pisot. Fac. sci. Paris, 20(2):19/01–19/l0 (1968).Google Scholar
  155. 155.
    E. R. Gentile, Homomorphismes et fermeture algebrique des modules a coefficients dans un anneau associatif. Publs. Fac. cienc. fisicomat. Univ. nac. La Plata, No. 213, pp. 191–200 (1966).Google Scholar
  156. 156.
    E. R. Gentile, A uniqueness theorem on rings of matrices. J. Algebra, 6(1):l31–134 (1967).MathSciNetMATHGoogle Scholar
  157. 157.
    E. R. Gentile, A note on the uniqueness of the invariant factors. Rev. Union mat. argent, y Aroc. fis. argent., 23 (1):31–34 (1966).MathSciNetMATHGoogle Scholar
  158. 158.
    L. Gewirtzman, Anti-isomorphisms of the endomorphism rings of torsion-free modules. Math. Z., 98(5):391–400 (1967).MathSciNetMATHGoogle Scholar
  159. 159.
    Y. Give’on, Categories of semimodules: the categorical structural properties of transition systems. Math. Syst. Theor., 1967, 1(1):67–78 (1967).MathSciNetMATHGoogle Scholar
  160. 160.
    A. W. Goldie, Localization in non-commutative Noetherian rings. J. Algebra, 5(1):89–105 (1967).MathSciNetMATHGoogle Scholar
  161. 161.
    A. W. Goldie, A note on non-commutative localization. J. Algebra, 8 (1):41–44 (1968).MathSciNetMATHGoogle Scholar
  162. 162.
    N. S. Gopalakrishnan and R. Sridharan, Homological dimension of Ore-extensions. Pacif. J. Math., 19 (1):67–75 (1966).MathSciNetMATHGoogle Scholar
  163. 163.
    L. Gouyon, Sur le choix de certaines “P-compacités”. C. r. Acad. sci., 263(10): A345–A347 (1966).MathSciNetGoogle Scholar
  164. 164.
    L. Gouyon, Sur le choix de quelques topologies sur un espace vectoriel ou un module. Ann. Fac. sci. Univ. Toulouse sci. math. et sci. phys., 29:17–34 (1965).Google Scholar
  165. 165.
    J. Guerindon, Sur lafonction caractéristique d’un module gradué. Bol. Soc. mat. Sao Paulo, 16(1–2):115–127 (1965).MathSciNetGoogle Scholar
  166. 166.
    J. Guerindon, Quelques applications des modules gradues. Sémin. Dubreil et Pisot. Fac. Sci. Paris., 17 (1):4/01–4/11 (1967).Google Scholar
  167. 167.
    R. M. Hamsher, Commutative, noetherian rings over which every module has a maximal submodule. Proc. Amer. Math. Soc., 17(6):1471–1472 (1966).MathSciNetMATHGoogle Scholar
  168. 168.
    R. M. Hansher, Commutative rings over which every module has a maximal submodule. Proc. Amer. Math. Soc., 18(6):1133–1137 (1967).MathSciNetGoogle Scholar
  169. 169.
    A. Hanna, Dualität in Moduln. J. reine und angew. Math., 224:113–117 (1966): correction, ibid., 228:220 (1967).MathSciNetMATHGoogle Scholar
  170. 170.
    M. Harada, Multiplicative ideal theory in hereditary orders. J. Math. Osaka City Univ., 14(2):83–106 (1963).MathSciNetGoogle Scholar
  171. 171.
    M. Harada, Hereditary orders which are dual. J. Math. Osaka City Univ., 14(2): 107–115 (1963).MathSciNetGoogle Scholar
  172. 172.
    M. Harada, On semi-primary PP-rings. Osaka J. Math., 2(1):153–161 (1965).MathSciNetMATHGoogle Scholar
  173. 173.
    M. Harada, Note on quasi-injective modules. Osaka J. Math., 2(2):351–356 (1965).MathSciNetMATHGoogle Scholar
  174. 174.
    M. Harada, QF-3 and semi-primary PP-rings. I. Osaka J. Math., 2(2):357–368 (1965).MATHGoogle Scholar
  175. 175.
    M. Harada, QF-3 and semi-primary PP-rings. II. Osaka J. Math., 3(1):21–27 (1966).MathSciNetMATHGoogle Scholar
  176. 176.
    M. Harada, Hereditary semi-primary rings and triangular matrix rings. Nagoya Math. J., 27(2):463–484 (1966).MathSciNetMATHGoogle Scholar
  177. 177.
    M. Harada, Note on orders over which an hereditary order is projective. Osaka J. Math., 4(1):151–156 (1967).MathSciNetMATHGoogle Scholar
  178. 178.
    T. Harase, Adjoint pairs of functors on abelian categories. J. Fac. Sci., Univ. Tokyo, Sec. 1, 13(2):175–182 (1966).MathSciNetMATHGoogle Scholar
  179. 179.
    M. E. Harris, Some results on coherent rings. Proc. Amer. Math. Soc., 17(2): 474–479 (1966).MathSciNetMATHGoogle Scholar
  180. 180.
    R. Hart, Endomorphisms of modules over semi-prime rings. J. Algebra, 4 (1):46–51 (1966).MathSciNetMATHGoogle Scholar
  181. 181.
    R. Hart, Simple rings with uniform right ideals. J. London Math. Soc., 42(4): 614–617 (1967).MathSciNetMATHGoogle Scholar
  182. 182.
    R. E. Harte, A theorem of isomorphism. Proc. London Math. Soc., l6(4):753–765 (1966).MathSciNetMATHGoogle Scholar
  183. 183.
    A. Hattori, Rank element of a projective module. Nagoya Math. J., 25:113–125 (March, 1965).MathSciNetMATHGoogle Scholar
  184. 184.
    A. Hattori, Simple algebras over a commutative ring. Nagoya Math. J., 27(2): 611–616 (1966).MathSciNetMATHGoogle Scholar
  185. 185.
    A. Heller, Homological algebra in Abelian categories. Ann. Math., 68(3):484–525 (1958).MathSciNetMATHGoogle Scholar
  186. 186.
    A. Heller, Homological functors. Math. Z., 87(2):283–298 (1965).MathSciNetMATHGoogle Scholar
  187. 187.
    G. A. Heizer, “On divisibility and injectivity,” Doctoral dissertation, Northwestern Univ. (1964), 70 pp.; Dissert. Abstr., 25(11):6656–6657 (1965).Google Scholar
  188. 188.
    G. A. Heizer, On divisibility and injectivity. Canad. J. Math., 18(5):901–919 (1966).MathSciNetGoogle Scholar
  189. 189.
    G. Hochschild, Relative homological algebra. Trans. Amer. Math. Soc., 82(1): 246–269 (1956).MathSciNetMATHGoogle Scholar
  190. 190.
    G. Horrocks, Projective modules over an extension of a local ring. Proc. London Math. Soc., 14(56):714–718 (1964).MathSciNetMATHGoogle Scholar
  191. 191.
    G. Horrocks, Vector bundles on the punctured spectrum of a local ring. Proc. London Math. Soc., 14(56):689–713 (1964).MathSciNetMATHGoogle Scholar
  192. 192.
    G. Horrocks, An application of projective homotopy theory to reduction of base. Proc. London Math. Soc., 16(1):40–52 (1966).MathSciNetMATHGoogle Scholar
  193. 193.
    T. Ishikawa, On injective modules and flat modules. J. Math. Soc. Japan, 17(3): 291–296 (1965).MathSciNetMATHGoogle Scholar
  194. 194.
    B. Iversen, On flat extension of Noetherian rings. Proc. Amer. Math. Soc., 16(6): 1401–1406 (1965).MathSciNetMATHGoogle Scholar
  195. 195.
    H. Jacobiski, Sur lesardres commutatifs avec un nombre fini de réseaux indécomposables. Acta math., 118(1–2):1–31 (1967).MathSciNetGoogle Scholar
  196. 196.
    J. P. Jans, Projective injective modules. Pacif. J. Math., 9(4):1103–1108 (1959).MathSciNetMATHGoogle Scholar
  197. 197.
    J. P. Jans, Rings and Homology, Holt, Rinehart and Winston, New York (1964), 88 pp.Google Scholar
  198. 198.
    J. P. Jans, Some aspects of torsion. Pacif. J. Math., 15(4):1249–1259 (1965).MathSciNetMATHGoogle Scholar
  199. 199.
    J. P. Jans, On orders in quasi-Frobenius rings. J. Algebra, 7 (1):35–43 (1967).MathSciNetMATHGoogle Scholar
  200. 200.
    J. P. Jans, A note on injectives. Math. Ann., 175(3):239–242 (1968).MathSciNetMATHGoogle Scholar
  201. 201.
    C. U. Jensen, On characterizations of Prüfer rings. Math. Scand., 13(1):90–98 (1963).MathSciNetMATHGoogle Scholar
  202. 202.
    C. U. Jensen, A remark on flat and projective modules. Canad. J. Math., 18(5): 943–949 (1966).MathSciNetMATHGoogle Scholar
  203. 203.
    C. U. Jensen, A remark on semi-hereditary local rings. J.London Math. Soc., 41(3):479–482 (1966).MathSciNetMATHGoogle Scholar
  204. 204.
    C. U. Jensen, On homological dimensions of rings with countably generated ideals. Math. Scand., 18(2):97–105 (1966).MathSciNetMATHGoogle Scholar
  205. 205.
    C. U. Jensen, Homological dimensions of Ko-coherent rings. Math. scand., 20(1): 55–60 (1967).MathSciNetMATHGoogle Scholar
  206. 206.
    J.-P. Jouanlou, Sur la profondeur des modules de type fini. C. r. Acad. sci., 258(8):2245–2247 (1964).Google Scholar
  207. 207.
    T. Kanzaki, On commutator rings and Galois theory of separable algebras. Osaka J. Math., 1(1):103–115 (1964).MathSciNetMATHGoogle Scholar
  208. 208.
    I. Kaplansky, The homological dimension of a quotient field. Nagoya math. J., 27(1):139–142 (1966).MathSciNetMATHGoogle Scholar
  209. 209.
    K. Karták, On endomorphisms of the direct sum of two modules. Casop. pêstov. mat., 93(1):117–120 (1968).MATHGoogle Scholar
  210. 210.
    F. Kaschand E. A. Mares, Eine Kennzeichnung semi-perfecter Moduln. Nagoya Math. J., 27(2):525–529 (1966).MathSciNetGoogle Scholar
  211. 211.
    T. Kato, Duality of cyclic modules. Tôhoku Math. J., 19(3):349–356 (1967).MATHGoogle Scholar
  212. 212.
    T. Kato, Self-injective rings. Tôhoku Math. J., 19(4):485–495 (1967).MATHGoogle Scholar
  213. 213.
    T. Kato, Some generalizations of QF-rings. Proc. Japan Acad., 44(3):114–119 (1968).MathSciNetMATHGoogle Scholar
  214. 214.
    T, Kato, Torsionless modules. Tôhoku Math. J., 20(2):234–243 (1968).MATHGoogle Scholar
  215. 215.
    S. M. Kaye, Ring theoretic properties of matrix rings. Canad. math. Bull., 10(3): 365–374 (1967).MathSciNetMATHGoogle Scholar
  216. 216.
    R. Kielpiñski, On -pure injective modules. Bull. Acad. polon. sci. Sér sci. math. astron. et phys., 15(3):127–131 (1967).MATHGoogle Scholar
  217. 217.
    K. Kishimoto, On zeros of polynomials and Galois extensions of simple rings. J. Fac. Sci. Shinshu Unov., 2(2):117–122 (1967).MathSciNetMATHGoogle Scholar
  218. 218.
    K. Kishimoto, T. Onodera, and H. Tominaga, On the normal basis theorems and the extension dimension. J. Fac. Sci. Hokkaido Univ., Ser. 1, 18(1–2):8188 (1964).MathSciNetGoogle Scholar
  219. 219.
    T. Klein, The multiplication of Schur-functions and extensions of p-modules. J. London Math. Soc., 43(2):280–284 (1968).MathSciNetMATHGoogle Scholar
  220. 220.
    I. Kleiner, Free and injective Lie modules. Canad. Math. Bull., 9(1):29–42 (1966).MathSciNetMATHGoogle Scholar
  221. 221.
    M. Knebusch, Flementarteilertheorie über Maximalordnungen. J. reine und angew. Math., 226:175–183 (1967).MathSciNetMATHGoogle Scholar
  222. 222.
    K. Koh, On simple rings with maximal annihilator right ideals. Canad. Math. Bull., 8(5):667–668 (1965).MathSciNetMATHGoogle Scholar
  223. 223.
    K. Koh, On some characteristic properties of self-injective rings. Proc. Amer. Math. Soc., 19(1):209–213 (1968).MathSciNetMATHGoogle Scholar
  224. 224.
    K. Koh, On a semiprimary ring. Proc. Amer. Math. Soc., 19 (1):205–208 (1968).MATHGoogle Scholar
  225. 225.
    E. Kreindler, Remarques sur le théorème des facteurs invariants. Bull. Math. Soc. sci. mat. RSR, 11(2):181–186 (1967).MathSciNetGoogle Scholar
  226. 226.
    E. Kreindler, Opérateurs pseudo-linéaires dans les modules unitaires. Rev. roumaine math. pures et appl., 13(2):201–234 (1968).MathSciNetMATHGoogle Scholar
  227. 227.
    R. S. Kulkarni, On a theorem of Jensen. Amer. Math. Monthly, 74(8):960–961 (1967).MathSciNetMATHGoogle Scholar
  228. 228.
    J.-P. Lafon, Spectre primier bilatère de l’anneau des endomorphismes d’un module de type fini. C. r. Acad. sci., 262(20):A1098–A1099 (1966).MathSciNetGoogle Scholar
  229. 229.
    J.-P. Lafon, Spectre premier bilatère de l’anneau des endomorphismes d’un module de type fini. Bull Soc. Math. France, 94(4):269–275 (1967).MathSciNetGoogle Scholar
  230. 230.
    J.-P. Lafon, Représentation d’algèbres comme quotients d’anneaux d’endomorphismes. Bull sci. math., 91(1–2):13–16 (1967).MathSciNetMATHGoogle Scholar
  231. 231.
    T.-Y. Lam, The category of Noetherian modules. Proc. Nat. Acad. Sci. USA, 55(5):1038–1040 (1966).MATHGoogle Scholar
  232. 232.
    J. Lambek, Lectures on rings and modules, Blaisdell, Waltham (Mass.), (1966), 183 pp.MATHGoogle Scholar
  233. 233.
    M. L. Laplaza, “Sobre la ordenacion de modulos,” Actas 5 reun. anual mat. esp. Valencia, 1964; Madrid (1967), pp. 221–224.Google Scholar
  234. 234.
    M. D. Larsen, Equivalent conditions for a ring to be aP-ring and a note on flat overrings. Duke Math. J., 34(2):273–280 (1967).MathSciNetMATHGoogle Scholar
  235. 235.
    D. Lazard, Algèbre symètrique et platitude. C. r. Acad. sci., 264(5):A228–A230 (1967).MathSciNetGoogle Scholar
  236. 236.
    D. Lazard, Epimorphismes plats d’anneaux. C. r. Acad. sci., 266(6):A314–A316 (1968).MathSciNetGoogle Scholar
  237. 237.
    W. G. Leavitt, The module type of homomorphic images. Duke Math. J., 32(2): 305–311 (1965).MathSciNetMATHGoogle Scholar
  238. 238.
    W. G. Leavitt, Type radicals. Glasgow Math. J., 9 (1):22–29 (1968).MathSciNetMATHGoogle Scholar
  239. 239.
    D. Legrand, Formes quadratiques et algèbres quadratiques. C. r. Acad. Sci., 265(23):A764–A767 (1967).MathSciNetGoogle Scholar
  240. 240.
    C. Lemaire, Sur le complété d’un anneau-module topologique. Bull. cl. sci. Acad. roy. Belg., 52(3):390–394 (1966).MathSciNetMATHGoogle Scholar
  241. 241.
    W. W. Leonard, Small modules. Proc. Amer. Math. Soc., 17(2):527–531 (1966).MathSciNetMATHGoogle Scholar
  242. 242.
    L. S. Levy, Commutative rings whose homomorphic images are selfinjective. Pacif. J. Math., 18(1):149–153 (1966).MATHGoogle Scholar
  243. 243.
    L. S. Levy, Decomposing pairs of modules. Trans. Amer. Math. Soc., 122(1):64–80 (1966).MathSciNetMATHGoogle Scholar
  244. 244.
    S. Lichtenbaum, On the vanishing of Tor in regular local rings. III. J. Math., 10(2):220–226 (1966).MathSciNetMATHGoogle Scholar
  245. 245.
    D. Lissner, Outer product rings. Trans. Amer. Math. Soc., 116(4):526–535 (1965).MathSciNetMATHGoogle Scholar
  246. 246.
    D. Lissner, OP-rings and Seshadri’s theorem. J. Algebra, 5(3):362–366 (1967).MathSciNetMATHGoogle Scholar
  247. 247.
    H. Lugowski, Die Charakterisierung gewisser geordneter Halbmoduln mit Hilfe der Erweiterungstheorie. Publs. math., 13(1–4):237–248 (1966).MathSciNetMATHGoogle Scholar
  248. 248.
    J. C. McConnel, Localisation in enveloping rings. J. London Math. Soc., 43(3): 421–428 (1968).MathSciNetGoogle Scholar
  249. 249.
    I. G. Macdonald, Duality over complete local rings. Topology, 1:213–235 (July, 1962).MathSciNetMATHGoogle Scholar
  250. 250.
    S. MacLane, Homology, Springer, Berlin (1963), 422 pp.MATHGoogle Scholar
  251. 251.
    B. H. Maddox, “Absolutely pure modules,” Doctoral dissertation, Univ. of South Carolina (1965), 31 pp.; Dissert. Abstr., 25(11):6658–6659 (1965).MathSciNetGoogle Scholar
  252. 252.
    B. H. Maddox, Absolutely pure modules. Proc. Amer. Math. Soc., 18(1):155–158 (1967).MathSciNetMATHGoogle Scholar
  253. 253.
    M.-P. Malliavin, Modules sur les anneaux locaux réguliers. C. r. Acad. sci., 262(13):A736–A739 (1966).MathSciNetGoogle Scholar
  254. 254.
    M.-P. Malliavin, Modules sur les anneaux locaux réguliers non ramifiés. C. r. Acad. sci., 262(14):A811–A812 (1966).MathSciNetGoogle Scholar
  255. 255.
    M.-P. Malliavin-Brameret, Modules sur les anneaux locaux réguliers. Bull. Soc. math. France, 94(4):261–268 (1966).MathSciNetMATHGoogle Scholar
  256. 256.
    M.-P. Malliavin-Brameret, Largeurs d’anneaux et de modules. Bull Soc. math. France, 1966, 94(8):3–76 (1967).MathSciNetGoogle Scholar
  257. 257.
    M.-P. Malliavin-Brameret, Modules de longueur finie sur un anneau régulier. C. r. Acad. sci., 264(3):A91–A94 (1967).MathSciNetGoogle Scholar
  258. 258.
    M.-P. Malliavin-Brameret, Sous-anneaux non ramifiés d’anneaux réguliers. C. r. Acad. Sci., 264(9):A385–A387 (1967).MathSciNetGoogle Scholar
  259. 259.
    J.-M. Maranda, Completions of modules and rings. Trans. Roy. Soc Canada, Sec 1–3, Vol. 3, pp. 271–291 (1965).MathSciNetGoogle Scholar
  260. 260.
    H. Mascart, Sur Tutilisation de la polarité dans la théorie des modules topologiques. C. r. Acad. sci., 262(1):A16–A19 (1966).MathSciNetGoogle Scholar
  261. 261.
    E. Matlis, Modules with descending chain condition. Trans. Amer. Math. Soc., 97:495–508 (1960).MathSciNetGoogle Scholar
  262. 262.
    E. Matlis, Cotorsion modules. Mem. Amer. Math. Soc., No. 49 (1964), 66 pp.MathSciNetGoogle Scholar
  263. 263.
    E. Matlis, Decomposable modules. Trans. Amer. Math. Soc., 125 (1):147–179 (1966).; correction, ibid., 134:315–324 (1968).MathSciNetMATHGoogle Scholar
  264. 264.
    E. Matlis, Reflexive domains. J. Algebra, 8 (1):1–33 (1968).MathSciNetMATHGoogle Scholar
  265. 265.
    C. K. Megibben, Modules over an incomplete discrete valuation ring. Proc. Amer. Math. Soc 19:450–452 (1968).MathSciNetMATHGoogle Scholar
  266. 266.
    G. Michler, Charakterisierung einer Klasse von Noetherschen Ringen. Math. Z., 100(2):163–182 (1967).MathSciNetMATHGoogle Scholar
  267. 267.
    B. Mitchell, Theory of Categories, Academic Press, New York (1965), 273 pp.MATHGoogle Scholar
  268. 268.
    B. Mitchell, On the dimension of objects and categories. I. Monoids. J. Algebra, 9(3):314–340 (1968).MATHGoogle Scholar
  269. 269.
    B. Mitchell, On the dimension of objects and categories. II. Finite ordered sets. J. Algebras, 9:341–368 (1968).MATHGoogle Scholar
  270. 270.
    Y. Miyashita, Quasi-projective modules, perfect modules and a theorem for modular lattices. J. Fac. Sci. Hokkaido Univ., Ser. 1, 19(2):86–100 (1966).MathSciNetMATHGoogle Scholar
  271. 271.
    T. Miyata, Note on direct summands of modules. J. Math. Kyoto Univ., 7;65–69 (1967).MathSciNetMATHGoogle Scholar
  272. 272.
    H. Y. Mochizuki, On the double commutator algebra of QF-3 algebras. Nagoya Math. J., 25:221–230 (March, 1965).MathSciNetMATHGoogle Scholar
  273. 273.
    K. Morita, Duality for modules and its applications to the theory of rings with minimum condition. Sci.Repts. Tokyo Kyoiku Daigaku, A6:83–142 (May 15,1958).Google Scholar
  274. 274.
    K. Morita, Adjoint pairs functors and Frobenius extensions. Sci. Repts. Tokyo Kyoiku Daigaku, A9(202–208):40–71 (1965).Google Scholar
  275. 275.
    K. Morita, On S-rings in the sense of F. Kasch. Nagoya Math. J., 27(2):687–695 (1966).MathSciNetMATHGoogle Scholar
  276. 276.
    K. Morita, The endomorphism ring theorem for Frobenius extensions. Math. Z., 102(5):385–404 (1967).MathSciNetMATHGoogle Scholar
  277. 277.
    K. R. Mount, On polynomial rings. Mich. Math. J., 13(2):161–163 (1966).MathSciNetMATHGoogle Scholar
  278. 278.
    B. Muller, Quasi-Frobenius Erweiterungen. I. Math. Z., 85(4):345–368 (1964).MathSciNetGoogle Scholar
  279. 279.
    B. Muller, Quasi-Frobenius Erweiterungen. II. Math. Z., 88(5):380–409 (1965).MathSciNetGoogle Scholar
  280. 280.
    B. Muller, Über vollständige (Ko-) Homologie. Math. Ann., 165(3):223–235 (1966).MathSciNetGoogle Scholar
  281. 281.
    B. Muller, On algebras of dominant dimension one. Nagoya Math. J., 31:173–183 (1968).MathSciNetGoogle Scholar
  282. 282.
    B. Müller, The classification of algebras by dominant dimension. Canad. J. Math., 20(2):398–409 (1968).MathSciNetMATHGoogle Scholar
  283. 283.
    I. Murase, On the derivations of a quasi-matrix algebra. Scient. Papers Coll. Gen. Educ. Univ. Tokyo, 14(2):157–164 (1964).MathSciNetMATHGoogle Scholar
  284. 284.
    M. P. Murthy, Projective modules over a class of polynomial rings. Math. Z., 88(2):184–189 (1965).MathSciNetMATHGoogle Scholar
  285. 285.
    M. P. Murthy, Projective A(X)-modules. J. London Math. Soc., 41(3):453–456 (1966).MathSciNetMATHGoogle Scholar
  286. 286.
    M. Narita, Weak topologies and injective modules. Proc. Japan. Acad., 43(1): 6–10 (1967).MathSciNetMATHGoogle Scholar
  287. 287.
    C. Nstsescu, Sur une classe d’anneaux. C. r. Acad. sci., 266(19):A966–A969 (1968).Google Scholar
  288. 288.
    C. Nstsescu and N. Popescu, Sur la structure des objets de certaines categories abéliennes. C. r. Acad. sci., AB262(24):A1295–A1297 (1966).Google Scholar
  289. 289.
    C. Nstsescu and N. Popescu, Quelques observations sur les topos abéliens. Rev. roumaine math. pures et appl., 12(4):551–563 (1967).Google Scholar
  290. 290.
    N. Nobusawa, On lattices in a module over a matrix algebra. Canad. Math. Bull., 9 (1):57–6l (1966).MathSciNetMATHGoogle Scholar
  291. 291.
    N. Nobusawa, Structure theorems of a module over a ring with a bilinear mapping. Canad. Math. Bull., 10(5):649–652 (1967).MathSciNetMATHGoogle Scholar
  292. 292.
    D. G. Northcott and M. Reufel, Contributions to the specialization theory of polynomial modules. Proc. Roy Soc., A281(1386):291–309 (1964).MathSciNetGoogle Scholar
  293. 293.
    D. G. Northcott and M. Reufel, A generalization of the concept of length. Quart. J. Math., 16(64):297–32l (1965).MathSciNetMATHGoogle Scholar
  294. 294.
    A. P. Northover, Modules over a one-dimensional local ring. Quart. J. Math., 17(67):195–210 (1966).MathSciNetMATHGoogle Scholar
  295. 295.
    J.-P. Oliver, Anneauxabsolument plats universles et épimorphismes d’anneaux. C. r. Acad. sci., 266(6):A317–A318 (1968).Google Scholar
  296. 296.
    T. Onodera, Some studies on projective Frobenius extensions. J. Fac. Sci. Hokkaido Univ., Ser. 1, 18(1–2)189–107 (1967).Google Scholar
  297. 297.
    B. L. Osofsky, A counter example to a lemma of Skornjakov. Pacif. J. Math., 15(3):985–987 (1965).MathSciNetMATHGoogle Scholar
  298. 298.
    B. L. Osofsky, Cyclic injective modules of full linear rings. Proc. Amer. Math. Soc., 17(1):247–253 (1966).MathSciNetMATHGoogle Scholar
  299. 299.
    B. L. Osofsky, A generalization of quasi-Frobenius rings. J. Algebra, 4:373–387 (1966): correction, ibid.. 8:41–44 (1968).MathSciNetMATHGoogle Scholar
  300. 300.
    B. L. Osofsky, Global dimension of valuation rings. Trans. Amer. Math. Soc., 127(1):136–149 (1967).MathSciNetMATHGoogle Scholar
  301. 301.
    B. L. Osofsky, A non-trivial ring with non-rational injective hull. Canad. Math. Bull., 10(2):275–282 (1967).MathSciNetMATHGoogle Scholar
  302. 302.
    B. L. Osofsky, Upper bounds on homological dimensions. Nogoya Math. J., 32: 315–322 June, (1968).MathSciNetMATHGoogle Scholar
  303. 303.
    B. L. Osofsky, Endomorphisms rings of quasi-injective modules. Canad. J. Math., 20(4):895–903 (1968).MathSciNetMATHGoogle Scholar
  304. 304.
    B. L. Osofsky, Noncommutative rings whose cyclic modules have cyclic injective hulls. Pacif. J. Math., 25:331–340 (1968).MathSciNetMATHGoogle Scholar
  305. 305.
    B. L. Osofsky, Homological dimension and the continuum hypothesis. Trans. Amer. Math. Soc., 132:217–230 (1968).MathSciNetMATHGoogle Scholar
  306. 306.
    B. Pareigis, Einige Bemerkungen über Frobenius Erweiterungen. Math. Ann., 153(1):1–13 (1964).MathSciNetGoogle Scholar
  307. 307.
    B. Pareigis, “Radikale und kleine Moduln,” Sitzungsber. Bayer. Akad. Wiss. München, Math.-naturwiss. Kl. (1965), München (1966), pp. 185–199.Google Scholar
  308. 308.
    B. Pareigis, Vergessende Funktoren und Ringhomomorphismen. Math. Z., 93(4): 265–275 (1966).MathSciNetMATHGoogle Scholar
  309. 309.
    E. M. Patterson, The Jacobson radical of a pseudo-ring. Math. Z., 89(4):348–364 (1965).MathSciNetMATHGoogle Scholar
  310. 310.
    R. E. Peinado, Una clasificación de anillos. Rev. mat. hisp.-amer., 25(6):249–261 (1965).MathSciNetMATHGoogle Scholar
  311. 311.
    R. E. Peinado and W. G. Leawitt, The maxit and minit of a ring. Proc. Glasgow Math. Assoc, 7:128–135 (1966).MathSciNetMATHGoogle Scholar
  312. 312.
    J. C. Pleasant, “Certain relations between objects and morphisms in arbitrary categories and module categories,” Doctoral dissertation, Univ. of South Carolina (1965), 51 pp.; Dissert. Abstr., 26(8):4697 (1966).Google Scholar
  313. 313.
    N. Popescu and A. Radu, La structure des modules injectifs sur un anneau à ideal principal. Bull. Math. Soc. sci. math. etphys.RPR, 8(1–2):67–73 (1964).MathSciNetGoogle Scholar
  314. 314.
    Y. Quentel, Sur une caractérisation des anneaux de valuation de hauteur. C. r. Acad. Sci., 265(21):A659–A661 (1967).MathSciNetGoogle Scholar
  315. 315.
    Y. Quentel, Sur une caractrisation des anneaux semihérédiaires. commutatifs. C. r. Acad. Sci., No. 5, pp. A266–A267 (1968).MathSciNetGoogle Scholar
  316. 316.
    A. Radu, Functia caracteristic a lui Hilbert. Studii i cercetri mat. Acad. RSR, 19(4):537–547 (1967).MathSciNetMATHGoogle Scholar
  317. 317.
    N. Radu, Asupra functorului de completare, Studii i cercetri mat. Acad. RSR, 17(7):1077–1087 (1965).MathSciNetMATHGoogle Scholar
  318. 318.
    N. Radu, Sur les anneaux coherénts laskériens. Rev. roumaine de math. pures et appl., Acad. RSR, 11(7):865–867 (1966).MathSciNetMATHGoogle Scholar
  319. 319.
    N. Radu, Module de S-cotorsiune. An. Univ. Bucuresti. Ser. tiin. natur. Mat. mecan., 15(2):25–32 (1966).MathSciNetMATHGoogle Scholar
  320. 320.
    N. Radu, Sur la décomposition primaire des modules. Bull math. Soc. sci. math. RSR, 10(1–2):143–149 (1966).MathSciNetGoogle Scholar
  321. 321.
    N. Radu, Asupra unor categorii de module. Studii i cercetri mat. Acad. RSR, 19(3):393–402 (1967).MathSciNetMATHGoogle Scholar
  322. 322.
    C. F. F. Raggi, Localizaction en anillos no commutativos. An. Inst. mat. Univ. nac. autónoma Mexico, 6:1–6 (1966).MATHGoogle Scholar
  323. 323.
    L. J. Ratliff, On finite modules over a Noetherian domain. III. J. Math., 10(1): 56–60 (1966).MathSciNetMATHGoogle Scholar
  324. 324.
    J. Ravel, Objects spéciaux dans certaines catégories. C. r. Acad. sci., 264(5): 226–227 (1967).MathSciNetMATHGoogle Scholar
  325. 325.
    J. Ravel, Extensions essentielles dans un module, C. r. Acad. sci., 264(15): A657–A659 (1967).MathSciNetGoogle Scholar
  326. 326.
    M. Raynaud, Solution d’un problème universel relatif aux modules projectifs de type fini. C. r. Acad. sci., 260(17):4391–4394 (1965).MathSciNetMATHGoogle Scholar
  327. 327.
    I. Reiner, Module extensions and blocks. J. Algebra, 5(2):I57-I63 (1967).MathSciNetMATHGoogle Scholar
  328. 328.
    G. Renault, Etude des sous-modules compléments dans un A-module. Sémin. Dubreil et Pisot. Fac. Sci. Paris, 16(2):16/01–16/12 (1967).Google Scholar
  329. 329.
    G. Renault, Anneaux self-injectifs. Sémin. Dubreil et Pisot. Fac. Sci. Paris, l9 (1):11/01–11/04 (1967).Google Scholar
  330. 330.
    G. Renault, Etude des anneaux réduits et de leurs enveloppes injectives. C. r. Acad. sci., 264(2):A53–A55 (1967).MathSciNetGoogle Scholar
  331. 331.
    G. Renault, Sur les anneaux A tels que tout A-module a gauche non nul contient un soud-module maximal. C. r. Acad. sci., 264(14):A622–A624 (1967).MathSciNetGoogle Scholar
  332. 332.
    G. Renault, Anneaux assocíé à un module injectif. C. r. Acad. sci., 264(26): A1163–A1164 (1967).MathSciNetGoogle Scholar
  333. 333.
    G. Renault, “Etude des sous-modules complements dans un module,” Bull. Soc. Math. France, Vol. 95, Mem. No. 9, 79 pp. (1967).MathSciNetGoogle Scholar
  334. 334.
    G. Renault, Anneaux réduits non commutatifs. J. Math. pures et appl., 46(2): 203–214 (1967).MathSciNetMATHGoogle Scholar
  335. 335.
    G. Renault, Anneau associé a un module injectif. Bull. sci. math., 92(1–2):53–58 (1968).MathSciNetMATHGoogle Scholar
  336. 336.
    R. Rentschier, Eine Bemerkung zu Ringen mit Minimalbedingung für Hauptideale. Arch. Math., 17(4):298–301 (1966).Google Scholar
  337. 337.
    R. Rentschier and P. Gabriel, Sur la dimension des anneaux et ensembles ordonnés. C. r. Acad. sci., 265(22):A7I2–A7I5 (1967).Google Scholar
  338. 338.
    M. Reufei, Konstruktionsverfahren bei Modulnüber Polynomringen. Math. Z., 90(3):231–250 (1965).MathSciNetGoogle Scholar
  339. 339.
    P. Ribenboim, On the completion of a valuation ring. Math. Ann., 155(5):392–396 (1964).MathSciNetMATHGoogle Scholar
  340. 340.
    P. Ribenboim, On ordered modules. J. reine und angew. Math., 225:120–146 (1967): correction, ibid., 238:132–134 (1969).MathSciNetMATHGoogle Scholar
  341. 341.
    F. Richman, Generalized quotient rings. Proc. Amer. Math. Soc., 16(4):794–799 (1965).MathSciNetMATHGoogle Scholar
  342. 342.
    F. Richman and E. A. Walker, Cotorsion free, an example of relative injectivity. Math. Z., 102(2):115–117 (1967).MathSciNetMATHGoogle Scholar
  343. 343.
    M. A. Rieffel, A general Wedderburn theorem. Proc. Nat. Acad. Sci. USA, 54(6): 1513 (1965).MathSciNetGoogle Scholar
  344. 344.
    “Ringe und Moduln,” Tagungsbericht 27 Feb.-5 März, 1966, Math. Forschungsinst., Oberwolfach (1966), 14 pp.Google Scholar
  345. 345.
    J.-E. Roos, Caractérisation des catégories qui sont quotients de catégories de modules par des sous-catégories bilocalisants. C. r. Acad. sci., 261(23):4954–4957 (1965).MathSciNetMATHGoogle Scholar
  346. 346.
    A. Roy, A note on filtered rings. Arch. Math., 16(6):421–427 (1965).MathSciNetMATHGoogle Scholar
  347. 347.
    E. A. Rutter, Jr., A remark concerning quasi-Frobenius rings. Proc. Amer. Math. Soc., 16(6):1372–1373 (1965).MathSciNetMATHGoogle Scholar
  348. 348.
    P. Samuel, Anneaux gradués factoriels et modules réflexifs. Bull. Soc. math. France, 92(2):237–249 (1964).MathSciNetMATHGoogle Scholar
  349. 349.
    P. Samuel, Modules réflexifs et anneaux factoriels. Colloq. internat. Centre nat. rech. scient., 143:219–223 (1966).MathSciNetMATHGoogle Scholar
  350. 350.
    P. Samuel, “Modules réflexifs et anneaux factoriels,” in; Les Tendances Géométriques en Algèbre et Théorie des Nombres (1966), pp. 219–223.Google Scholar
  351. 351.
    P. Samuel, Modules réflexifs et anneaux factoriels. Sémin.Dubreilet Pisot. Fac. Sci., Paris, 17 (1):8/01–8/04 (1967).MathSciNetGoogle Scholar
  352. 352.
    D. F. Sanderson, A generalization of divisibility and injectivity in modules. Canad. Math. Bull., 8(4):505–513 (1965).MathSciNetMATHGoogle Scholar
  353. 353.
    F. L. Sandomierski, “Relative injectivity and projectivity,” Doctoral dissertation Pennsylvania State Univ. (1964) 67 pp.; Dissert. Abstr., 25(11):6664 (1965).Google Scholar
  354. 354.
    F. L. Sandomierski, Nonsingular rings. Proc. Amer. Math. Soc., 19(1):225–230 (1968).MathSciNetMATHGoogle Scholar
  355. 355.
    D. A. Sankowsky, “Relative homo logical dimensions of rings and modules,” Doctoral dissertation, Univ. California, Berkeley (1967), 44 pp. Dissert. Abstr., B28(10):4206 (1968).Google Scholar
  356. 356.
    M. Satyanarayana, Rings with primary ideals as maximal ideals. Math. Scand., 20 (1):52–54 (1967).MathSciNetMATHGoogle Scholar
  357. 357.
    M. Satyanarayana, Semisimple rings. Amer. Math. Monthly, 74(19):1086 (1967).MathSciNetMATHGoogle Scholar
  358. 358.
    M. Satyanarayana, Characterization of local rings. Tohoku Math. J., 19(4):411–416 (1967).MathSciNetMATHGoogle Scholar
  359. 359.
    J.-P. Serre, Sur les modules projectifs, Sémin P. Dubreil, M-L Dubreil-Jacotin et C. Pisot; Fac. sci. Paris, 1960–1961, 14 année, fasc. 1, Paris 2/01–2/16 (1963).Google Scholar
  360. 360.
    C. S. Seshadri, Triviality of vector bundles over the affine space K2. Proc. Nat. Acad. Sci. USA, 44(5):456–458 (1958).MathSciNetMATHGoogle Scholar
  361. 361.
    C. S. Seshadri, Algebraic vector bundles over the product of an affine curve and the line. Proc. Amer. Math. Soc., 10(5):670–673 (1959).MathSciNetMATHGoogle Scholar
  362. 362.
    L. Silver, Noncommutative localizations and applications. J. Algebra, 7 (1):44–76 (1967).MathSciNetMATHGoogle Scholar
  363. 363.
    L. W. Small, An example in Noetherian rings. Proc. Nat. Acad. Sci. USA, 54(4): 1035–1036 (1965).MathSciNetMATHGoogle Scholar
  364. 364.
    L. W. Small, “Some remarks on the homological dimensions of a quotient field,” Mimeographed notes, Univ. of California, Berkeley, Calif. (1966).Google Scholar
  365. 365.
    L. W. Small, Hereditary rings. Proc. Nat. Acad. Sci. USA, 55:25–27 (1966).MathSciNetMATHGoogle Scholar
  366. 366.
    L. W. Small, On some questions in Noetherian rings. Bull. Amer. Math. Soc., 72(5):853–857 (1966).MathSciNetMATHGoogle Scholar
  367. 367.
    L. W. Small, Orders in Artinian rings. J. Algebra, 4(1):13–41 (1966).MathSciNetMATHGoogle Scholar
  368. 368.
    L. W. Small, Semihereditary rings. Bull. Amer. Math. Soc., 73(5):656–658 (1967).MathSciNetMATHGoogle Scholar
  369. 369.
    L. W. Small, Correction and addendum: Orders in Artinian rings. J. Algebra, 4:505–507 (1966).MathSciNetGoogle Scholar
  370. 370.
    L. W. Small, Orders in Artinian rings. II. J. Algebra, 9(3):266–273 (1968).MathSciNetMATHGoogle Scholar
  371. 371.
    L. W. Small, A change of rings theorem. Proc. Amer. Math. Soc., 19(3):662–666 (1968).MathSciNetMATHGoogle Scholar
  372. 372.
    D. A. Smith, Chevalley bases for Lie modules. Trans. Amer. Math. Soc., 115(3): 283–299 (1965).MathSciNetMATHGoogle Scholar
  373. 373.
    E. Snapper, Injective modules under change of rings. Proc. Amer. Math. Soc., 16(4):788–790 (1965).MathSciNetMATHGoogle Scholar
  374. 374.
    A. Solian, Characterization of some functors of modules. Rev. roumaine math. pures et appl 11(3):283–285 (1966).MathSciNetMATHGoogle Scholar
  375. 375.
    A. Solian, Foncteurs qui transforment les épimorphismes locaux en monomorphismes locaux. Rev. roumaine math. pures et appl., 11(4):401–410 (1966).MathSciNetMATHGoogle Scholar
  376. 376.
    R. Sridharan, Homo logy of non-commutative polynomial rings. Nagoya Math. J., 26 (1):53–59 (1966).MathSciNetMATHGoogle Scholar
  377. 377.
    O. tnail, Citeva observaii asupra topologizrii modulelor. Studii i cercetlri mat. Acad. RSR, 18(5):681–686 (1966).Google Scholar
  378. 378.
    A. Steger, Diagonability of idempotent matrices. Pacif. J. Math., l9(3):535–542 (1966).MathSciNetMATHGoogle Scholar
  379. 379.
    B. T. Stenström, Pure submodules. Arkiv mat., 7(2):159–171 (1967).MATHGoogle Scholar
  380. 380.
    B. T. Stenström, High submodules and purity. Arkiv mat., 7(2):173–176 (1967).MATHGoogle Scholar
  381. 381.
    R. W. Stringall, Endomorphism rings of primary Abelian groups. Pacif. J. Math., 20(3):535–557 (1967).MathSciNetMATHGoogle Scholar
  382. 382.
    J. R. Strooker, Lifting projectives. Nagoya Math. J., 27(2):747–751 (1966).MathSciNetMATHGoogle Scholar
  383. 383.
    A. Sugano, A note on Azumaya’s theorem. Osaka J. Math., 4(1):I57-I6O (1967): correction ibid., 5:153 (1968).MathSciNetMATHGoogle Scholar
  384. 384.
    A. Sugano, Note on semisimple extensions and separable extensions. Osaka J. Math., 4(2):265–270 (1967).MathSciNetMATHGoogle Scholar
  385. 385.
    S. Suzuki, Note on formally projective modules. J. Math. Kyoto Univ., 5(3): 193–196 (1966).MathSciNetMATHGoogle Scholar
  386. 386.
    Y. Suzuki, On automorphisms of an injective module. Proc. Japan Acad., 44(3): 120–124 (1968).MathSciNetMATHGoogle Scholar
  387. 387.
    R. G. Swan, Induced representations and projective modules. Ann. Math., 71(3): 552–578 (1960).MathSciNetMATHGoogle Scholar
  388. 388.
    R. G. Swan, The number of generators of a module. Math. Z., 102(4):318–322 (1967).MathSciNetMATHGoogle Scholar
  389. 389.
    F. Szász, Einige Kriterien für die Existenz des Einselementes in einem Ring. Acta scient. math., 28(1–2):31–37 (1967).MATHGoogle Scholar
  390. 390.
    H. Tachikawa, On dominant dimensions of QF-3 algebras. Trans. Amer. Math. Soc., 112(2):249–266 (1964).MathSciNetMATHGoogle Scholar
  391. 391.
    G. Thierrin, Anneaux métaprimitifs. Canad. J. Math., 17 (1):199–205 (1965).MathSciNetMATHGoogle Scholar
  392. 392.
    K. Tiwari, On complete ring of quotients. J. Indian Math. Soc., 31(2):95–99 (1967).MathSciNetMATHGoogle Scholar
  393. 393.
    A. K. Tiwary, On the quotients of indecomposable injective modules. Canad. Math. Bull., 9(2):187–190 (1966).MathSciNetMATHGoogle Scholar
  394. 394.
    Chi-te Tsai, Report on injective modules. Queen’s Papers Pure and Appl. Math., No. 6, 243 pp. (1966).Google Scholar
  395. 395.
    K. Uchida, A note on the projective modules over group rings. Proc. Japan Acad., 43(1):13–16 (1967).MathSciNetMATHGoogle Scholar
  396. 396.
    Y. Utumi, On continuous rings and self injective rings. Trans. Amer. Math. Soc., 118(6):158–173 (1965).MathSciNetMATHGoogle Scholar
  397. 397.
    Y. Utumi, On the continuity and self-injectivity of a complete regular ring. Canad. J. Math., 18(2):404–412 (1966).MathSciNetMATHGoogle Scholar
  398. 398.
    Y. Utumi, Self-injective rings. J. Algebra, 6 (1):56–64 (1967).MathSciNetMATHGoogle Scholar
  399. 399.
    P. Vámos, On ring classes defined by modules. Publs. math., 14(1–4):1–8 (1967).MATHGoogle Scholar
  400. 400.
    P. Vámos, The dual of the notion of “finitely generated”. J. London Math. Soc., 43:643–646 (1968).MathSciNetMATHGoogle Scholar
  401. 401.
    B. J. Varela, Une note sur des modules élastiques. Rev. colomb. mat., 1(3):26–28 (1967).MATHGoogle Scholar
  402. 402.
    W. V. Vasconcelos, On local and stable cancellation. An. Acad. brasil. ciênc, 37(3–4):389–393 (1965).MathSciNetMATHGoogle Scholar
  403. 403.
    W. V. Vasconcelos, R-sequences and the homology of Macaulay rings. An. Acad. brasil ciênc, 38(2):249–252 (1966).MathSciNetMATHGoogle Scholar
  404. 404.
    W. V. Vasconcelos, Ideals and cancellation. Math. Z., 102(5):353–355 (1967).MathSciNetMATHGoogle Scholar
  405. 405.
    O. E. Villamayor, Sur une representation matricielle de l’anneaux d’endomorphismes d’un module quelconque. Publs. Fac cienc fisicomat. Univ. nac La Plata, No. 213, pp. 185–190 (1956).MathSciNetGoogle Scholar
  406. 406.
    C. P. Walker, Relative homological algebra and Abelian groups. III. J. Math., 10(2):186–209 (1966).MATHGoogle Scholar
  407. 407.
    C. L. Walker and E. A. Walker “Quotient categories of modules,” Proc. conf. categor. algebra (1966), pp. 404–420.Google Scholar
  408. 408.
    Y. Watanabe, Simple algebras over a complete local ring. Osaka J. Math., 3 (1):13–20 (1966).MathSciNetMATHGoogle Scholar
  409. 409.
    R. H. Wenger, “Semigroups having qasi-Frobenius algebras,” Doctoral dissertation, Michigan State Univ. (1965), 70 pp.; Dissert. Abstr., 26(8):4703 (1966).Google Scholar
  410. 410.
    E. R. Willard, “Functors between categories of modules,” Doctoral dissertation, Pennsylvania State Univ. (1964), 81 pp,Dissert. Abstr. 25(11):6668–6669 (1965).Google Scholar
  411. 411.
    E. R. Willard, Properties of projective generators. Math. Ann., 158(5):352–364 (1965).MathSciNetMATHGoogle Scholar
  412. 412.
    Ling-Erl Eileen Ting Wu, A characterization of self-injective rings. Ill. J. Math., 10 (1):61–65 (1966).Google Scholar
  413. 413.
    Ling-Erl Eileen Ting Wu and J. P. Jans, On quasi projectives. Ill. J. Math., 11(3): 439–448 (1967).Google Scholar
  414. 414.
    Ling-Erl Eileen Ting Wu, H. Y. Mochizuki, and J. P. Jans, A characterization of QF-3 rings. Nagoya Math. J., 27(1):7–13 (1967).Google Scholar
  415. 415.
    F. Wuytack and J. Depunt, Operators over I-collections of modules. Bull. Soc. math. Belg., 17 (1):37–54 (1965).MathSciNetMATHGoogle Scholar
  416. 416.
    F. Wuytack and J. Depunt, Note on I-collections of modules. Bull Soc. math. Belg., 17(4):484–494 (1965).MathSciNetMATHGoogle Scholar
  417. 417.
    C. R. Yohe, Triangular and diagonal forms for matrices over commutative noe-therian rings. J. Algebra, 6(3):335–368 (1967).MathSciNetMATHGoogle Scholar
  418. 418.
    A. Zaka, Residue rings of semi-primary hereditary rings. Nagoya Math. J., 30:279–283 (Aug. 1967).MathSciNetGoogle Scholar
  419. 419.
    A. Zaks, Global dimension of Artinian rings. Proc. Amer. Math. Soc., 18(6): 1102–1106 (1967).MathSciNetMATHGoogle Scholar
  420. 420.
    A. Zaka, A note on semi-primary hereditary rings. Pacif. J. Math., 23:627–628 (1967).Google Scholar
  421. 421.
    H. Zassenhaus, Orders as endomorphism rings of modules of the same rank. J. London Math. Soc., 42:180–182 (1967).MathSciNetMATHGoogle Scholar
  422. 422.
    J. M. Zelmanowitz, Endomorphism rings of torsionless modules. 5(3):325–341 (1967).MathSciNetMATHGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • A. V. Mikhalev
  • L. A. Skornyakov

There are no affiliations available

Personalised recommendations