Ring Theory

  • L. A. Bokut’
  • K. A. Zhevlakov
  • E. N. Kuz’min
Part of the Progress in Mathematics book series (PM, volume 12)


In this survey we cover the papers on ring theory reviewed in the Mathematics section of Referativnyi Zhurnal during 1966-1968, with the exception of Nos. 11 and 12 of 1968, with which the authors had no opportunity to acquaint themselves. In individual cases earlier results are mentioned, as well as articles which had not been reviewed upto the moment of writing.


Prime Ring Jordan Algebra Division Ring Ring Theory Noetherian Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Andriyanov, “Periodic Hamiltonian rings,” Mat. Sb., 74(2):241–261 (1967).MathSciNetGoogle Scholar
  2. 2.
    V. I. Andriyanov, “Composite -rings,” Sverdl. Gos. Ped. Inst., Vol. 54, 12–21 (1967).Google Scholar
  3. 3.
    V. I. Andriyanov, “Composite Hamiltonian rings,” Mat. Zap. Ural’skii Univ., 5(3):15–30 (1966).MATHGoogle Scholar
  4. 4.
    V. I. Andriyanov and P. A. Freidman, “Hamiltonian rings,” Uch. Zap. Sverdl. Gos. Ped. Inst., Vol. 31, 3–23 (1965).Google Scholar
  5. 5.
    V. A. Andrunakievich and V. I. Arnautov, “Invertibility in topological rings,” Dokl. Akad. Nauk SSSR, 170(4):755–758 (1966).MathSciNetGoogle Scholar
  6. 6.
    V. A. Andrunakievich, V. I. Arnautov, and Yu. M. Ryabukhin, “Rings,” in; R. V. Gamkrelidze (Ed.), Progress in Mathematics, Vol. 5, Plenum Press, New York (1969), pp. 127–177.Google Scholar
  7. 7.
    V. A. Andrunakievich and Yu. M. Ryabukhin, “One-sided primarity in arbitrary rings,” in: Mathematical Investigations, Vol. 1, Part 1 [in Russian], Kishinev (1966), pp. 3–31.Google Scholar
  8. 8.
    V. A. Andrunakievich and Yu. M. Ryabukhin, “Primarity in rings,” in: Mathematical Investigations, Vol. 1, Part 2 [in Russian], Kishinev (1966), pp. 65–97.Google Scholar
  9. 9.
    V. A. Andrunakievich and Yu. M. Ryabukhin, “The existence of the Brown McCoy radical in Lie algebras,” Dokl. Akad. Nauk SSSR, 179(3):503–506 (1968).Google Scholar
  10. 10.
    V. A. Andrunakievich and Yu. M. Ryabukhin, “Prime ideals in noncommutative rings,” Dokl. Akad. Nauk SSSR, 165(1):13–16 (1965).Google Scholar
  11. 11.
    V. A. Andrunakievich and Yu. M. Ryabukhin, “Connected rings,” in: Investigations in General Algebra [in Russian], Kishinev (1965), pp. 3–24.Google Scholar
  12. 12.
    V. A. Andrunakievich and Yu. M. Ryabukhin, “On the additive theory of ideals in rings, modules, groupoids,” Dokl. Akad. Nauk SSSR, 168(3):495–498 (1966).Google Scholar
  13. 13.
    V. A. Andrunakievich and Yu. M. Ryabukhin, “Additive theory of ideals in systems with quotients,” Izd. Akad. Nauk SSSR, Ser. Mat., 31(5):1057–1090 (1967).MATHGoogle Scholar
  14. 14.
    V. A. Andrunakievich and Yu. M. Ryabukhin, “Rings without nilpotent elements and completely prime ideals,” Dokl. Akad. Nauk SSSR, 180(1):9–11 (1968).Google Scholar
  15. 15.
    V. I. Arnautov, “Topologically weakly regular rings,” in: Investigations in Algebra and Mathematical Analysis [in Russian], Kartya Moldovenyaske, Kishinev (1965). pp. 3–10.Google Scholar
  16. 16.
    V. I. Arnautov, “Topological rings with a given local weight,” in: Investigations in General Algebra [in Russian], Kishinev (1965), pp. 25–36.Google Scholar
  17. 17.
    V. I. Arnautov, “Pseudonormalizability criterion for topological rings,” Algebra Logika, Seminar, 4(4):3–24 (1965).MathSciNetMATHGoogle Scholar
  18. 18.
    V. I. Arnautov, “Topologization of the ring of integers,” Bul. Akad. Shtiintse RSSMold., No. 1, 3–15 (1968).Google Scholar
  19. 19.
    A. Blokh, “One generalization of the notion of a Lie algebra,” Dokl. Akad. Nauk SSSR, l65(3):47l-473 (1965).MathSciNetGoogle Scholar
  20. 20.
    A. A. Bovdi, “Group rings of torsion-free groups,” Sibirsk. Mat. Zh., l(4):555–558 (1960).MathSciNetMATHGoogle Scholar
  21. 21.
    L. A. Bokut’, “Embedding of rings in a division ring,” Dokl. Akad. Nauk SSSR, 175(4):755–758 (1967).MathSciNetGoogle Scholar
  22. 22.
    L. A. Bokut’, “Embedding theorems in the theory of algebras,” Colloq. Math., 14:349–353 (1964).MathSciNetGoogle Scholar
  23. 23.
    L. A. Bokut’, “Factorization theorems for certain classes of rings without zero divisors, II,” Algebra Logika, Seminar, 4(5):17–46 (1965).MathSciNetMATHGoogle Scholar
  24. 24.
    L. A. Bokut’, “Factorization theorems for certain classes of rings without zero divisors, I,” Algebra Logika, Seminar, 4(4):25–52 (1965).MathSciNetMATHGoogle Scholar
  25. 25.
    L. A. Bokut’, “The continuations of isomorphisms of rings,” Algebra Logika, Seminar, 7(1):33–45 (1968).MathSciNetMATHGoogle Scholar
  26. 26.
    L. P. Busarkina, “Some set-theoretic decompositions of rings,” Mat. Zap. Ural’skii Inst., 5(1):15–27 (1965).MathSciNetMATHGoogle Scholar
  27. 27.
    L. P. Busarkina and N. F. Sesekin, “First power algebras,” Mat. Zap. Ural’skii Inst., 5 (1):28–34 (1965).MathSciNetMATHGoogle Scholar
  28. 28.
    A. I. Veksler, “Lattice orderability of algebras and rings,” Dokl. Akad. Nauk SSSR, 164(2):259–262 (1965).MathSciNetGoogle Scholar
  29. 29.
    B. B. Venkov, “Homologies of identity groups in algebras with a divisor,” Tr. Mat. Inst. Akad. Nauk SSSR, 80:66–89 (1965).MathSciNetGoogle Scholar
  30. 30.
    M. I. Vodinchar, “Pseudonormalizability criterion for topological algebras,” in: Mathematical Investigations, Vol. 2, Part 1 [in Russian], Kishinev (1967), pp. 133–140.Google Scholar
  31. 31.
    M. Gavrilov, “Identity relations in a full matrix algebra,” Godishnik Sofiisk. Univ., Mat. Fak., 59:45–48 (1964–1965 (1966)).MathSciNetGoogle Scholar
  32. 32.
    V. I. Gemintern, “Semiprime rings with atomic structure of left ideals,” Sibirsk. Mat. Zh., 8(4):947–951 (1967).MathSciNetGoogle Scholar
  33. 33.
    E. S. Golod, “Certain problems of the Burnside type,” Report Abstracts, Internat. Congr. Mathematicians [in Russian], Moscow (1966), p. 142.Google Scholar
  34. 34.
    E. L. Gorbachuk, “Splittability of torsion and pretorsion in the category of right A-modules,” Mat. Zametki, 2(6):681–688 (1967).MathSciNetMATHGoogle Scholar
  35. 35.
    I. M. Goyan, “The Baer radical of nearrings,” Bul. Akad. Shtiintse RSSMold., No. 4, 32–38 (1966).Google Scholar
  36. 36.
    I. M. Goyan, “Driprimarity in rings,” in: Mathematical Investigations, Vol. 1, Part 2 [in Russian], Kishinev (1966), pp. 151–171.Google Scholar
  37. 37.
    I. M. Goyan and Yu. M. Ryabukhin, “On the axiomatic additive theory of Riley ideals,” in: Mathematical Investigations, Vol. 2, Part 1 [in Russian], Kishinev (1967), pp. 14–25.Google Scholar
  38. 38.
    L. Ya. Gringlaz, “Locally nilpotent quasirings,” Mat. Zap. Ural’skii Univ., 5(1):35–42 (1965).MathSciNetMATHGoogle Scholar
  39. 39.
    R. A. Danilov, “Composition algebra of entire functions,” Collection of Articles on Mathematics, Chelyabinsk State Ped. Inst., No. 1, Part 2 [in Russian], (1966), pp. 102–110.Google Scholar
  40. 40.
    Hai-ch’uan Jang, “The proof of one of the properties of quadratic alternative rings,” Jilin Shida Xuebao, No. 1, 1–3 (1965).Google Scholar
  41. 41.
    A. Kh. Dolotkazin, “Lie algebras of rank one with nonzero inner product. I,” Izv. Vyssh. Uchebnyk Zavedenii, Matematika, No. 4, 36–43 (1966).MathSciNetGoogle Scholar
  42. 42.
    A. Kh. Dolotkazin, “Lie algebras of rank one with nonzero inner product. II,” Izv. Vyssh. Uchebnykh Zavedenii, Matematika, No. 5, 70–77 (1966).MathSciNetGoogle Scholar
  43. 43.
    A. Kh. Dolotkazin, “The Lie algebras U0 (xl,...,xn),” Summaries of the Scientific Aspirants Conference of 1965 at the Kazan Univ. Math. Mech., Report Abstracts [in Russian], Kazan (1967), pp. 13–14.Google Scholar
  44. 44.
    G. I. Domracheva, “Some remarks on lattice-ordered algebras and their ideals,” Uch. Zap. Novgorodsk. Golovn. Ped. Inst., 7:3–16 (1966).Google Scholar
  45. 45.
    Yu. A. Drozd, “Representations of cubic Z-rings,” Dokl. Akad. Nauk SSSR, 174¢L):l6–18 (1967).MathSciNetGoogle Scholar
  46. 46.
    Yu. A. Drozd and V. V. Kirichenko, “Representations of rings lying in a secondorder matrix algebra,” Ukrainsk. Mat. Zh., 19(3):107–112 (1967).MATHGoogle Scholar
  47. 47.
    Yu. A. Drozd and V. V. Kirichenko, “Hereditary orders,” Ukrainsk. Mat. Zh., 20(2):246–248 (1968).MATHGoogle Scholar
  48. 48.
    Yu. A. Drozd and V. M. Turchin, “The number of modules of representations in genus for second-order integral matrix rings,” Mat. Zametki, 2(2):133–138 (1967).MathSciNetMATHGoogle Scholar
  49. 47.
    Z. M. Dyment, “Maximal commutative nilpotent subalgebra of a sixth-order matrix algebra,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 3, 53–68 (1966).MathSciNetGoogle Scholar
  50. 50.
    V. P. Elizarov, “Plane extensions of rings,” Dokl. Akad. Nauk SSSR, 175(4):759–761 (1967).MathSciNetGoogle Scholar
  51. 51.
    V. P. Elizarov, “Two properties of associative rings,” Mat. Zametki, 2(3):225–232 (1967).MathSciNetGoogle Scholar
  52. 52.
    V. P. Elizarov, “Pseudo division rings and quotient rings,” Sibirsk. Mat. Zh., 8(4):782–787 (1967).MathSciNetGoogle Scholar
  53. 53.
    V. P. Elizarov, “Nonsingularly dimensional rings,” Sibirsk. Mat. Zh., 6(5):1181–1184 (1965).MathSciNetMATHGoogle Scholar
  54. 54.
    V. P. Elizarov, “Subcommutative 2-rings,” Mat. Zametki, 2(6):639–694 (1967).Google Scholar
  55. 55.
    V. P. Elizarov, “Correction to my paper ’Quotient rings of associative rings’,” Izv. Akad. Nauk SSSR, Ser. Mat., 31(3):727 (1967).MathSciNetMATHGoogle Scholar
  56. 56.
    K. A. Zhevlakov, “Alternative Artinian rings,” Algebra Logika, Seminar, 5(3): 11–36 (1966).MATHGoogle Scholar
  57. 57.
    K. A. Zhevlakov, “Solvability and nilpotency of Jordan rings,” Algebra Logika, Seminar, 5(3):37–58 (1966).MATHGoogle Scholar
  58. 58.
    K. A. Zhevlakov, Lower nilradical of alternative rings, Algebra Logika, Seminar, 6(4):11–17 (1967).MATHGoogle Scholar
  59. 59.
    K. A. Zhevlakov, “Radical ideals of an alternative ring,” Algebra Logika, Seminar, 4(4):87–102 (1965).MATHGoogle Scholar
  60. 60.
    K. A. Zhevlakov, “The nilradical of Mal’tsev algebras,” Algebra Logika, Seminar, 4(5):67–78 (1965).MATHGoogle Scholar
  61. 61.
    K. A. Zhevlakov, “Remarks on prime alternative rings,” Algebra Logika, Seminar, 6(2):21–33 (1967).MATHGoogle Scholar
  62. 62.
    A. E. Zalesskii, “Solvable groups and crossed products,” Mat. Sb., 67 (1):l54–160 (1965).MathSciNetGoogle Scholar
  63. 63.
    A. E. Zalesskii, “The semisimplicity of a crossed product,” Sibirsk. Mat. Zh., 6(5):1009–1013 (1965).MathSciNetGoogle Scholar
  64. 64.
    O. A. Ivanova, “Nilpotent decomposition of associative algebras,” Mat. Sb., 71(3):423–432 (1966).MathSciNetGoogle Scholar
  65. 65.
    P. S. Kazimirs’kii, One remark on the theory of domains of principal ideals, Vestnik L’vov Politekhn. Inst., No. 16, 96–97 (1967). [in Ukrainian]Google Scholar
  66. 66.
    I. L. Kantor, “Infinite-dimensional prime graded Lie algebras,” Dokl. Akad. Nauk SSSR, 179(3):534–537 (1968).MathSciNetGoogle Scholar
  67. 67.
    A. A. Kirillov, “Certain algebras with divisor over the field of rational functions,” Funkts. Analiz i Ego Prilozh., 1(1):101–102 (1967).MathSciNetGoogle Scholar
  68. 68.
    A. A. Kirillov, “Division rings generated by matrices with independent elements,” Uspekhi Mat. Nauk, 23(1):227–228 (1968).MathSciNetMATHGoogle Scholar
  69. 69.
    A. A. Kirillov, “Unitary representations of nilpotent Lie groups,” Uspekhi Mat. Nauk, 17(4):57–110 (1962).MathSciNetGoogle Scholar
  70. 70.
    V. V. Kirichenko, “Orders all of whose representations are completely decomposable,” Mat. Zametki, 2(2):139–144 (1967).MathSciNetGoogle Scholar
  71. 71.
    A. U. Klimyk, “Decomposition of a direct product of irreducible representations of semisimple Lie algebras over irreducible representations,” Ukrainsk. Mat. Zh., 18(5):19–27 (1966).MathSciNetCrossRefGoogle Scholar
  72. 72.
    A. I. Kostrikin, “Squares of adjoint endomorphisms in simple Lie p-algebras,” Izv. Akad. Nauk SSSR, Ser. Mat., 31(2):445–487 (1967).MathSciNetMATHGoogle Scholar
  73. 73.
    A. I. Kostrikin, “Simple Lie algebras of finite characteristic,” Uspekhi Mat. Nauk, 23(2):204–205 (1968).Google Scholar
  74. 74.
    A. I. Kostrikin, “A theorem on semisimple Lie p-algebras,” Mat. Zametki, 2(5):465–474 (1967).MathSciNetMATHGoogle Scholar
  75. 75.
    A. I. Kostrikin and I. R. Shafarevich, “Cartan pseudogroups and Lie p-algebras,” Dokl. Nauk SSSR, 168(4):740–742 (1966).Google Scholar
  76. 76.
    É. G. Koshevoi, “Multiplicative semigroups of one class of rings without zero divisors,” Algebra Logika, Seminar, 5(5):49–54 (1966).MATHGoogle Scholar
  77. 77.
    V. A. Kreknin, “Solvability of a Lie algebra with a regular automorphism,” Sibirsk. Mat. Zh., 8(3):715–716 (1967).MathSciNetMATHGoogle Scholar
  78. 78.
    E. N. Kuz’min, “Certain classes of algebras with divisor,” Algebra Logika, Seminar, 5(2):57–102 (1966).MathSciNetMATHGoogle Scholar
  79. 79.
    E. N. Kuz’min, “Algebras with divisor over the real number field,” Dokl. Akad. Nauk SSSR, 172(5):1014–1017 (1967).MathSciNetGoogle Scholar
  80. 80.
    E. N. Kuz’min, “Engel’s theorem for binary Lie algebras,” Dokl. Akad. Nauk SSR, 176(4):771–773 (1967).MathSciNetGoogle Scholar
  81. 81.
    E. N. Kuz’min, “Anticommutative algebras satisfying the Engel condition,” Sibirsk. Mat. Zh., 8(5):1026–1034 (1967).MathSciNetMATHGoogle Scholar
  82. 82.
    E. N. Kuz’min, “Locally nilpotent radical of Mal’tsev algebras satisfying the n-th Engel condition,” Dokl. Akad. Nauk SSSR, 177(3):508–510 (1967).MathSciNetGoogle Scholar
  83. 83.
    E. N. Kuz’min, “One class of anticommutative algebras,” Algebra Logika Seminar, 6(4):31–50 (1967).MathSciNetMATHGoogle Scholar
  84. 84.
    E. N. Kuz’min, “Locally finite Mal’tsev algebras,” Algebra Logika, Seminar, 6(4):27–30 (1967).MathSciNetMATHGoogle Scholar
  85. 85.
    E. N. Kuz’min, “Algebraic sets in Mal’tsev algebras,” Algebra Logika 7(2):42–47 (1968).MathSciNetMATHGoogle Scholar
  86. 86.
    E. N. Kuz’min, “Zero divisors in binary Lie algebras,” Sibirsk. Mat. Zh., 9(1): 97–103 (1968).MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    E. N. Kuz’min, “Simple Mal’tsev algebras over a field of characteristic zero,” Dokl. Akad. Nauk SSSR, 181(6):1324–1326 (1968).MathSciNetGoogle Scholar
  88. 88.
    E. N. Kuz’min, “Mal’tsev algebras and their representations,” Algebra Logika, 7(4):48–69 (1968).MathSciNetMATHGoogle Scholar
  89. 89.
    V. N. Latyshev, “Zero divisors and nilelements in a Lie algebra,” Sibirsk. Mat. Zh., 4(4):830–836 (1963).MATHGoogle Scholar
  90. 90.
    V. N. Latyshev, “Generalization of Hilbert’s theorem on the finiteness of bases,” Sibirsk. Mat. Zh., 7(6):1422–1424 (1966).Google Scholar
  91. 91.
    V. N. Latyshev, “Finite generation of a T-ideal with the element [x1, x2, x3, x4],” Sibirsk. Mat. Zh., 6(6):1432–1434 (1965).MATHGoogle Scholar
  92. 92.
    E. M. Levich, “Prime and strictly prime rings,” Izv. Akad. Nauk LatvSSR, Ser. Fiz. i Tekhn. Nauk, No. 6, 53–58 (1965).Google Scholar
  93. 93.
    Z. S. Lipkina, “Pseudonormability of topological rings,” Sibirsk. Mat. Zh., 6(5):1046–1052 (1965).MathSciNetMATHGoogle Scholar
  94. 94.
    L. M. Makharadze, “Nilpotency of topological rings,” Soobshch. Akad. Nauk GruzSSR, 40(2):257–261 (1965).Google Scholar
  95. 95.
    V. I. Monastyrskii, “Periodic subgroups of the multiplicative group of a division ring,” IZv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 1, 29–31 (1965).Google Scholar
  96. 96.
    G. M. Mubarakzyanov, “Some theorems on solvable Lie algebras,” Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 6, 95–98 (1966).Google Scholar
  97. 97.
    A. F. Mutylin, “Example of a nontrivial topologization of the rational number field. Complete locally restricted fields,” Izv. Akad. Nauk SSSR, Ser. Mat., 30(4):873–890 (1966).MathSciNetMATHGoogle Scholar
  98. 99.
    A. F. Mutylin, “Correction to the paper ‘Example of a nontrivial topologization of the rational number field. Complete locally restricted fields’,“ Izv. Akad. Nauk SSSR, Ser. Mat., 32 (1):245–246 (1968).MathSciNetMATHGoogle Scholar
  99. 100.
    M. E. Novodvorskii, “Nondecomposable finite-dimensional representations of Lie algebras,” Vestnik Mosk. Univ., Mat., Mekh., No. 6, 52–55 (1966).MathSciNetGoogle Scholar
  100. 101.
    Fêng-wên Nie, “The F-potent property of rings,” Acta Scient. Natur. Univ. Jilinensis, No. 2, 25–33 (1964).Google Scholar
  101. 102.
    V. A. Parfenov, “Manifolds of Lie algebras,” Algebra Logika, Seminar, 6(4):61–73 (1967).MathSciNetMATHGoogle Scholar
  102. 103.
    A. V. Roiter, “On the theory of integral representations of rings,” Mat. Zametki, 3(3):361–366 (1968).MathSciNetMATHGoogle Scholar
  103. 104.
    A. N. Rukakov and I. R. Shafarevich, “Irreducible representations of a simple three-dimensional Lie algebra over a field of finite characteristic,” Mat. Zametki, 2(5):439–454 (1967).MathSciNetGoogle Scholar
  104. 105.
    Yu. M. Ryabukhin, “Primarities,” in: Mathematical Investigations, Vol. 2, Parll [in Russian], Kishinev (1967), pp. 67–82.MATHGoogle Scholar
  105. 106.
    Yu. M. Ryabukhin, “Semistrictly hereditary radicals in primitive classes of rings,” in: Research on General Algebra [in Russian], Kishinev (1965), pp. 111–122.Google Scholar
  106. 107.
    Yu. M. Ryabukhin, “Hypernilpotent and special radicals,” in: Research on Algebra and Mathematical Analysis [in Russian], Kartya Moldovenyaske, Kishinev (1965), pp. 65–72.Google Scholar
  107. 108.
    Yu. M. Ryabukhin, “Lower radicals of rings,” Mat. Zametki, 2(3):239–244 (1967).MathSciNetMATHGoogle Scholar
  108. 109.
    V. N. Salii, “Rings with commuting idempotents,” in: Theory of Semigroups and Its Application [in Russian], Saratov Univ., Saratov (1965), pp. 279–285.Google Scholar
  109. 110.
    Wang-chieh Hsieh, “Seminimality conditions and certain generalizations of the Wedderburn-Artin lattice theorem. I,” Acta Scient. Natur. Scholar. Super. Sinens., P. Math. Mech. et Astron., 1(3):209–223 (1965).Google Scholar
  110. 111.
    Wang-chieh Hsieh, “Semiminimality conditions and certain generalizations of the Wedderburn-Artin lattice theorem. II,” Acta Scient. Natur. Scholar. Super. Sinens., P. Math. Mech. et Astron., 1(4):299–317 (1965).Google Scholar
  111. 112.
    Wang-chieh Hsieh, “Structure of rings with nuclei and the nucleus of rings with nuclei,” Acta Scient. Natur. Univ. Jilinensis, No. 2, 65–84 (1964).Google Scholar
  112. 113.
    V. M. Seliverstov, “The -regularity of a matrix ring over a given ring,” Sibirsk. Mat. Zh., 9 (1):229–233 (1968).MathSciNetGoogle Scholar
  113. 114.
    L. A. Simonyan, “Certain radicals of Lie algebras,” Sibirsk. Mat. Zh., 6(5):1101–1107 (1965).MATHGoogle Scholar
  114. 115.
    L. A. Skornyakov, “Cohn rings,” Algebra Logika, Seminar, 4(3):5–30 (1965).MATHGoogle Scholar
  115. 116.
    L. A. Skornyakov, “Locally bicompact biregular rings (supplement),” Mat. Sb., 69(4):663 (1966).MathSciNetGoogle Scholar
  116. 117.
    L. A. Skornyakov, “The Elizarov quotient ring and the localization principle,” Mat. Zametki, 1(3):263–268 (1967).MathSciNetMATHGoogle Scholar
  117. 118.
    L. A. Skornyakov, “Left-chain rings,” Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 4, 114–117 (1966).Google Scholar
  118. 119.
    D. A. Suprunenko and V. I. Monastyrnyi, “Silov subgroups of the multiplicative group of a division ring,” Dokl. Akad. Nauk BSSR, 9(4):217–218 (1965).MathSciNetMATHGoogle Scholar
  119. 120.
    D. A. Suprunenko and R. I. Tyshkevich, Commutative Matrices [in Russian], Nauka i Tekhnika, Minsk (1966), 104 pp.Google Scholar
  120. 121.
    B. V. Tarasoy, “Free associative algebras,” Algebra Logika, Seminar, 6(5):93–105 (1967).Google Scholar
  121. 122.
    P. A. Freidman, “Rings associative modulo their own radicals,” Mat. Zap. Ural’skii Univ., 5(1):67–72 (1965).MathSciNetMATHGoogle Scholar
  122. 123.
    P. A. Freidman, “Rings with a distributive subring lattice,” Mat. Sb., 73(4): 513–534 (1967).MathSciNetGoogle Scholar
  123. 124.
    G. M. Tsukerman, “Rings of endomorphisms of free modules,” Sibirsk. Mat. Zh., 7(5):1161–1167 (1966).Google Scholar
  124. 125.
    A. I. Cheremisin, “Completely orderable rings,” Algebra Logika, Seminar, 4(6): 29–46 (1965).MATHGoogle Scholar
  125. 126.
    A. I. Cheremisin, “Completely orderable rings,” Algebra Logika, Seminar, 4(2): 67–85 (1965).MATHGoogle Scholar
  126. 127.
    B. Chernyshov, “CR-rings and their isomorphisms,” Sibirsk. Mat. Zh., 7(5):1168–1193 (1966).Google Scholar
  127. 128.
    B. Chernyshov, “Finitely-approximable prime continuous regular rings,” Sibirsk. Mat. Zh., 8(3):695–704 (1967).MATHGoogle Scholar
  128. 129.
    B. M. Shain, “O-rings and LA-rings,” Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 2, 111–112 (1966).Google Scholar
  129. 130.
    M. A. Shatalova, l A - and l I-rings,“ Sibirsk. Mat. Zh., 7(6):1383–1399 (1966).MATHGoogle Scholar
  130. 131.
    M. A. Shatalova, “Certain aspects of the theory of lattice-ordered rings,” Uspekhi Mat. Nauk, 21(5):267–268 (1966).Google Scholar
  131. 132.
    M. A. Shatalova, “Irreducible extensions of lattice-ordered rings,” Sibirsk. Mat. Zh., 8(2):406–414 (1967).MATHGoogle Scholar
  132. 133.
    M. A. Shatalova, “One class of lattice-ordered rings,” Uch. Zap. Mosk. Obl. Ped. Inst., 185:125–134 (1967).Google Scholar
  133. 134.
    A. I. Shirshov, “Certain identity relations in algebras,” Sibirsk. Mat. Zh., 7(4): 963–966 (1966).MathSciNetGoogle Scholar
  134. 135.
    A. I. Shirshov, “Special J-rings,” Mat. Sb., 38(2):149–166 (1956).MathSciNetGoogle Scholar
  135. 136.
    É. G. Shutov, “Certain immersions of rings,” Uch. Zap. Leningrad. Gos. Ped. Inst. im. Gertsena, 328:280 (1967).Google Scholar
  136. 137.
    I. K. Shcherbatskii, “Upper and lower isolated M-components,” Bul. Akad. Shtiintse RSSMold., No. 1, 89–93 (1968).Google Scholar
  137. 138.
    A. Abian, On the nilpotency of algebras. Amer. Math. Monthly, 74(1, part I):33–34 (1967).MathSciNetMATHCrossRefGoogle Scholar
  138. 139.
    A. A. Albert, New results on associative division algebras. J. Algebra, 5(1):110–132 (1967).MathSciNetMATHCrossRefGoogle Scholar
  139. 140.
    A. A. Albert, On associative division algebras of prime degree. Proc. Amer. Math. Soc., 16(4):799–802 (1965).MathSciNetMATHCrossRefGoogle Scholar
  140. 141.
    A. A. Albert, On exceptional Jordan division algebras. Pacif. J. Math., 15(2): 377–404 (1965).MATHCrossRefGoogle Scholar
  141. 142.
    H. P. Allen, Jordan algebras and Lie algebras of type D4. Bull. Amer. Math. Soc., 72(1, part I):65–67 (1966).MathSciNetMATHCrossRefGoogle Scholar
  142. 143.
    H. P. Allen, Jordan algebras and Lie algebras of type D4. Diessert. Abstrs, B27(5):I533 (1966).Google Scholar
  143. 144.
    H. P. Allen, Jordan algebras and Lie algebras of type D4. J. Algebra, 5(2):250–265 (1967).MathSciNetMATHCrossRefGoogle Scholar
  144. 145.
    H. P. Allen, Rings with involution. Israel J. Math., 8(2):99–106 (1968).Google Scholar
  145. 146.
    S.A. Amitsur, Rational identities and applications to algebra and geometry. J. Algebra, 3(3):3O4–359 (1966).MathSciNetCrossRefGoogle Scholar
  146. 147.
    S. A. Amitsur, Nil semi-groups of rings with a polynomial identity. Nagoya Math. J., 27(1):103–111 (1966).MathSciNetMATHGoogle Scholar
  147. 148.
    S.A. Amitsur, An embedding of Pi-rings. Proc. Amer. Math. Soc., 3:3–9 (1952).MathSciNetMATHGoogle Scholar
  148. 149.
    S.A. Amitsur, Prime rings having polynomial identities with arbitrary coefficients. Proc. London Math. Soc., 17(3):470–486 (1967).MathSciNetMATHCrossRefGoogle Scholar
  149. 150.
    S. A. Amitsur and C. Procesi, Jacobson-rings and Hilbert algebras with polynomial identities. Ann. mat. pura ed appl., 71:61–72 (1966).MathSciNetMATHCrossRefGoogle Scholar
  150. 151.
    G. Ancochea, Algèbres associatives unitaires de dimension finie sur corps commutatif. J. reine und angew. Math., 222(1/2):75–78 (1966).MathSciNetMATHGoogle Scholar
  151. 152.
    G. Ancochea, Algèbres associatives unitaires sur un corps commutatif. J. Algebra, 9(2):176–180 (1968).MathSciNetCrossRefGoogle Scholar
  152. 153.
    C. T. Anderson, On an identity common to Lie, Jorfan and quasiassociative algebras. Doct. diss. Ohio State Univ. (1964), 53 pp. Dissert Abstr., 25(8):4716 (1965).Google Scholar
  153. 154.
    F. W. Anderson, Lattice-ordered rings of quotients. Canad. J. Math., 17(3):434–448 (1965).MathSciNetMATHCrossRefGoogle Scholar
  154. 155.
    J. M. Anderson, Sobre derivaciones generalizades. Rev. colomb. mat., 1(3):29–32 (1967).MATHGoogle Scholar
  155. 156.
    T. A. Anderson, A note on derivations of commutative algebras. Proc. Amer. Math. Soc., 17(5): 1199–1202 (1966).MathSciNetMATHCrossRefGoogle Scholar
  156. 157.
    T. Anderson, N. Divinsky, and A. Sulinski, Hereditary radicals in associative and alternative rings. Canad. J. Math., 17(4):594–603 (1965).MathSciNetMATHGoogle Scholar
  157. 158.
    S. Andreadakis, On the derivations and automorphisms of Lie algebras. Arch. Math., 17(1):36–43 (1966).MathSciNetMATHCrossRefGoogle Scholar
  158. 159.
    E. P. Armendariz, On radical extensions of rings. J. Austral. Math. Soc., 7(4): 552–554 (1967).MathSciNetMATHCrossRefGoogle Scholar
  159. 160.
    E. P. Armendariz and W. G. Leavitt, The hereditary property in the lower radical construction. Canad. J. Math., 20(2):474–476 (1968).MathSciNetMATHGoogle Scholar
  160. 161.
    A. Shigemoto, On the automorphism ring of division algebras. Kodai Math. Semin. Repts., 18(4):368–372 (1966).CrossRefGoogle Scholar
  161. 162.
    A. Shigemoto, On invariant subspaces of division algebras. Kodai Math. Semin. Repts., 18(4):332–334 (1966).Google Scholar
  162. 163.
    S. Aumercier, Problèmes d’extensions dans les anneaux. I. C . r. Acad. sci., AB262(13):A 733–A 735 (1966).MathSciNetGoogle Scholar
  163. 164.
    S. Aumercier, Problèmes d’extensions dans les anneaux. II. C. R. Acad. sci., AB262(19):A1031–A1033 (1966).MathSciNetGoogle Scholar
  164. 165.
    S. Aumercier, Problèmes d’extensions dans les anneaux. III. C. r. Acad. sci., AB262(20):A1095–A1097 (1966).MathSciNetGoogle Scholar
  165. 166.
    V. K. Balachandran, Regular elements of L-algebras. Math. Z., 93(2):161–163 (1966).MathSciNetMATHCrossRefGoogle Scholar
  166. 167.
    V. K. Balachandran and P. R. Parthasarathy, Cartan subalgebras of an L-algebra. Math. Ann., 166(4):300–301 (1966).MathSciNetMATHCrossRefGoogle Scholar
  167. 168.
    B. Banaschewski, Maximal rings of quotients of semi-simple commutative rings. Arch. Math., 16(6):414–420 (1965).MathSciNetMATHCrossRefGoogle Scholar
  168. 169.
    B. A. Barnes, Modular annihilatoralgebras.Canad. J.Math., 18(3):566–578 (1966).MathSciNetMATHCrossRefGoogle Scholar
  169. 170.
    D. W. Barnes, Lattice isomorphisms of associative algebras. J. Austral. Math. Soc., 6(1):106–121 (1966).MathSciNetMATHCrossRefGoogle Scholar
  170. 171.
    D. W. Barnes, On the radical of a ring with minimum condition. J. Austral. Math. Soc., 5(2):234–236 (1965).MathSciNetMATHCrossRefGoogle Scholar
  171. 172.
    R. T. Barnes, On splitting fields for certain Lie algebras of prime characteristic. Proc. Amer. Math. Soc., 17(4):930–935 (1966).MathSciNetMATHCrossRefGoogle Scholar
  172. 173.
    W. E. Barnes, On the -rings of Nobusawa. Pacif. J. Math., 18(3):411–422 (1966).MATHCrossRefGoogle Scholar
  173. 174.
    W. E. Barnes and W. M. Cunnea, On primary representations of ideals in non-commutative rings. Math. Ann., 173(3):233–237 (1967).MathSciNetMATHCrossRefGoogle Scholar
  174. 175.
    F. Bartolozzi, Su una classe di quasicorpi (sinistri) finiti. Rend. mat. e applic, 24(1):165–173 (1965).MathSciNetMATHGoogle Scholar
  175. 176.
    K. Baumgartner, Bemerkungen zum Isomorphieproblem der Ringe. Monatsh. Math., 70(4):299–308 (1966).MathSciNetMATHCrossRefGoogle Scholar
  176. 177.
    W. E. Baxter, Concerning the commutator subgroup of a ring. Proc. Amer. Math. Soc., 16(4):803–805 (1965).MathSciNetMATHCrossRefGoogle Scholar
  177. 178.
    W. E. Baxter and E. F. Haeussler, Generating submodules of simple rings with involution. Duke Math. J., 33(3):595–603 (1966).MathSciNetMATHCrossRefGoogle Scholar
  178. 179.
    W. E. Baxter and W. S. Martindale, Rings with involution and polynomial identities. Canad. J. Math., 20(2):465–473 (1968).MathSciNetMATHCrossRefGoogle Scholar
  179. 180.
    M. Becheanu, Remarque sur les radicals speciaux. Rev. roumaine math. pures et appl., 10(3):357–360 (1965).MathSciNetMATHGoogle Scholar
  180. 181.
    J. C. Beidleman, Nonsemi-simple distributively generated near-rings with minimum condition. Math. Ann., 170(3):206–213 (1967).MathSciNetMATHCrossRefGoogle Scholar
  181. 182.
    J. C. Beidleman, On the theory of radicals of distributively generated near-rings. I. The primitive radical. Math. Ann., 173(2):89–101 (1967).MathSciNetMATHGoogle Scholar
  182. 183.
    J. C. Beidleman, On the theory of radicals of distributively generated near-rings. II. The nil-radical. Math. Ann., 173(3):200–218 (1967).MathSciNetMATHGoogle Scholar
  183. 184.
    J. C. Beidleman, Quasi-regularity in near-rings. Math. Z., 89(3):224–229 (1965).MathSciNetMATHCrossRefGoogle Scholar
  184. 185.
    J. C. Beidleman, On near-rings and near-ring modules. Doct. diss. Penn. State Univ. (1964), 178 pp.; Dissert. Abstr., 25(8):4716–4717 (1965).Google Scholar
  185. 186.
    J. C. Beidleman, A radical for near-ring modules. Mich. Math. J., 12(3):377–383 (1965).MathSciNetMATHCrossRefGoogle Scholar
  186. 187.
    J. C. Beidleman, Distributively generated near-rings with descending chain condition. Mat. Z 91 (1):65–69 (1966).MathSciNetMATHCrossRefGoogle Scholar
  187. 188.
    J. C. Beidleman, Strictly prime distributively generated near-rings. Math. Z., 100(2):97–105 (1967).MathSciNetMATHCrossRefGoogle Scholar
  188. 189.
    J. C. Beidleman and R. H. Cox, Topological near-rings. Arch. Math., 18(5): 485–492 (1967).MathSciNetMATHCrossRefGoogle Scholar
  189. 190.
    L. P. Belluce and S. K. Jain, Prime rings with a one-sided ideal satisfying a polynomial identity. Pacif. J. Math., 24(3):421–424 (1968).MathSciNetMATHCrossRefGoogle Scholar
  190. 191.
    L. P. Belluce, I. N. Herstein, and S. K. Jain, Generalized commutative rings. Na goya Math. J., 27(1):1–5 (1966).MathSciNetMATHGoogle Scholar
  191. 192.
    A. Bergmann, Hauptnorm und Struktur von Algebren. J. reine und angew. Math., 222(3/4):160–194 (1966).MathSciNetMATHGoogle Scholar
  192. 193.
    P. Bernat, “Sur le corps enveloppant d’une algèbre de Lie résoluble,” Bull. Soc. Math. France, Mém. 7 (1966), 175 pp.MathSciNetGoogle Scholar
  193. 194.
    S. J. Bernau, On semi-normal lattice rings. Proc. Cambridge Philos. Soc., 61(3): 613–616 (1965).MathSciNetMATHCrossRefGoogle Scholar
  194. 195.
    M. Bertrand, Algèbres non associatives et algèbres génétique, Gauthier-Villars, Paris (1966), 103 pp.Google Scholar
  195. 196.
    A. R. Blass and C. V. Stanojevic, On certain classes of associative rings. Amer. Math. Monthly, 75(1):52–53 (1968).MATHCrossRefGoogle Scholar
  196. 197.
    R. E. Block, The Lie algebras with a quotient trace form. Ill. J. Math., 9(2): 277–285 (1965).MathSciNetMATHGoogle Scholar
  197. 198.
    R. E. Block, On the Mills-Seligman axioms for Lie algebras of classical type. Trans. Amer. Math. Soc., 121(2):378–392 (1966).MathSciNetMATHCrossRefGoogle Scholar
  198. 199.
    D. Boccioni, Caratterizzatione di une classe di anelli generalizzati. Rend. Semin. mat. Univ. Padova, 35(1):116–127 (1965).MathSciNetMATHGoogle Scholar
  199. 200.
    D. Boccioni, Struttura degli anelli generati dai loro elementi unita sinistry. Rend. Semin. mat. Univ. Padova, 39:86–101 (1967).MathSciNetGoogle Scholar
  200. 201.
    D. Boccioni, Immersione di un anello in anello avente un numero cardinale qualsiasi di elementi unita sinistry. Rend. Semin. mat. Univ. Padova, 39:102–122 (1967).MathSciNetGoogle Scholar
  201. 202.
    D. Boccioni, Somme dirette e rappresentazioni di anelli Es-generati. Rend. Semin. mat. Univ. Padova, 39:123–135 (1967).MathSciNetGoogle Scholar
  202. 203.
    A. H. Boers, L’anneau à quatre elements. Proc. Koninkl. nederl. akad. wet., 28(1):14–21 (1966).MathSciNetGoogle Scholar
  203. 204.
    A. H. Boers, Les anneaux 4- et 5-associatifs et quelques generalisations. Proc. Koninkl. nederl. akad. wet., A69(1):6–13 (1966).MathSciNetGoogle Scholar
  204. 205.
    J. W. Bond, Weak minimal generating set reduction theorems for associative and Lie algebras. Ill. J. Math., 10(4):579–591 (1966).MathSciNetMATHGoogle Scholar
  205. 206.
    P. R. Bongale, Filtred Frobenius algebras. Math. Z., 97(4):320–325 (1967).MathSciNetMATHCrossRefGoogle Scholar
  206. 207.
    W. Bos, Ein einfacher Beweis eines Satzes von Hurwitz über reelle Divisionsalgebren. Math.-phys. Semesterber., 12 (1):79–86 (1965).MathSciNetMATHGoogle Scholar
  207. 208.
    A. J. Bowtell, On a question of Mal’cev. J. Algebra, 7(1):126–139 (1967).MathSciNetMATHCrossRefGoogle Scholar
  208. 209.
    A. Braier, Exponential form of the elements of some algebras. Bull. Inst. politehn. Iasi, 13(1/2):115–122 (1967).MathSciNetGoogle Scholar
  209. 210.
    M.-P. Brameret, Treillis d’idéaux et structure d’anneaux. Sémin. Dubreil et Pisot Fac. Sci. Paris, 16 (1):1/01–1/12 (1962–1963).Google Scholar
  210. 211.
    H. Braun and M. Koecher, Jordan-algebren. Berlin, Springer, (1966) 375 pp.CrossRefGoogle Scholar
  211. 212.
    G. Brown Simple Lie algebras over fields of characteristic two. Math. Z., 95(3): 212–222 (1967).MathSciNetMATHCrossRefGoogle Scholar
  212. 213.
    R. B. Brown, On generalized Cayley-Dickson algebra. Pacif. J. Math., 20(3): 415–422 (1967).MATHCrossRefGoogle Scholar
  213. 214.
    R. H. Bruck, The algebra of dimension-linking operators. Canad. Math. Bull., 8(2):2O3–222 (1965).MathSciNetGoogle Scholar
  214. 215.
    P. Burmeister and J. Schmidt, On the completion of partial algebras. Colloq. math., 17(2):235–245 (1967).MathSciNetMATHGoogle Scholar
  215. 216.
    R. G. Buschman, Quasi-inverses of sequences. Amer. Math. Monthly, 73(4):134–135 (1966).MathSciNetMATHCrossRefGoogle Scholar
  216. 217.
    D. Butuc and M. Scutaru, Relatti si lärgirea notiunii de numår. Gaz. mat. (RSR), A72(10):370–378 (1967).Google Scholar
  217. 218.
    L. J. Cada, A structure theory for linear associative nilpotent algebras. Doct. diss. Cathol Univ. America, (1964), 52 pp.Google Scholar
  218. 219.
    W. H. Caldwell, Hypercyclic rings. Pacif. J. Math., 24(1)29–44 (1968).MathSciNetMATHCrossRefGoogle Scholar
  219. 220.
    R. E. Chandler and K. Koh, Applications of a function topology on rings with unit. Ill. J. Math., 11(4):580–585 (1967).MathSciNetMATHGoogle Scholar
  220. 221.
    A. J. Chandy, Rings generated by the inner automorphisms of non-Abelian groups. Doct. diss. Boston Univ. Graduate School., Dissert. Abstrs., 26(6)3365 (1965).Google Scholar
  221. 222.
    Hai-chuan Chang, Alternative rings. Sci. Abstr. China, Math. and Phys. Sci. 2(3):2–3 (1964).Google Scholar
  222. 223.
    Chong-yun Chao, A nonimbedding theorem of nilpotent Lie algebras. Pacif., J. Math., 22(2):231–234 (1967).CrossRefGoogle Scholar
  223. 224.
    Chong-yun Chao, Some characterizations of nilpotent Lie algebras. Math. Z., 103(1):40–42 (1968).MathSciNetCrossRefGoogle Scholar
  224. 225.
    N. Chaptal, Anneaux dond le demi-groupe multiplicatif est inverse. C. r. Acad. sci., AB262(5):A274–A277 (1966).MathSciNetGoogle Scholar
  225. 226.
    S. U. Chase and C. Faith, Quotient rings and direct products of full linear rings. Math. Z., 88 (3):250–264 (1965).MathSciNetMATHCrossRefGoogle Scholar
  226. 227.
    Kim-lin Chew, Extensions of rings and modules. Doct diss. Univ. Brit. Columbia, (1965), 129 pp.Google Scholar
  227. 228.
    Wei-liang Chow. On unmixedness theorem. Amer. J. Math., 86(4):799–822 (1964).MathSciNetCrossRefGoogle Scholar
  228. 229.
    Byoung-song Chwe, On the commutativity of restricted Lie algebra. Proc. Amer. Math. Soc., 16(3):547 (1965).MathSciNetCrossRefGoogle Scholar
  229. 230.
    W. E. Clark, A note on semiprimary PP-rings. Osaka J. Math., 4 (1):177–178 (1967).MathSciNetMATHGoogle Scholar
  230. 231.
    J. R. Clay, Imbedding an arbitrary ring in nontrivial near-ring. Amer. Math. Monthly, 74(4):406–407 (1967).MathSciNetMATHCrossRefGoogle Scholar
  231. 232.
    J. R. Clay and J. J. Malone, Jr., The near-rings with identities on certain finite groups. Math. scan., 19(1):146–150 (1966).MathSciNetMATHGoogle Scholar
  232. 233.
    A. Climescu, Asupra unei clase de algebre de ordinul patru. Bull. Inst. politechn. Iasi., 13(1–2):1–4 (1967).Google Scholar
  233. 234.
    A. Climescu, A nou clasa de inele slabe. Bull. Inst. politehn.Iasi., 10(3-4):1–4 (1964).Google Scholar
  234. 235.
    J. A. Cohn and D. Livingstone, On the structure of group algebras. I. Canad. J. Math., 17(4):583–593 (1965).MathSciNetMATHCrossRefGoogle Scholar
  235. 236.
    P. M. Cohn, Hereditary local rings. Nagoya Math. J., 27 (1):223–230 (1966).MathSciNetMATHGoogle Scholar
  236. 237.
    P. M. Cohn, On a class of binomial extensions. Ill. J. Math., 10(3):418–424 (1966).MATHGoogle Scholar
  237. 238.
    P. M. Cohn, A remark on matrix rings over free ideals rings. Proc. Cambridge Philos. Soc.,62 (1):1–4 (1966).MathSciNetMATHCrossRefGoogle Scholar
  238. 239.
    P. M. Cohn, Sur une classe d’anneaux hereditaires. Semin. Dubreil et Pisot Fac. Sci. Paris, 19 (1):7/01-7/05 (1967).Google Scholar
  239. 240.
    P. M. Cohn, On the free product of associative rings. Ill. J. Algebra, 8(3):376–383 (1968).MathSciNetMATHCrossRefGoogle Scholar
  240. 241.
    L. M. Court, The impossibility of rings with dual distributive laws. Riv. mat. Univ. Parma, 6:31–36 (1965).MathSciNetMATHGoogle Scholar
  241. 242.
    R. C. Courter, The dimension of maximal commutative subalgebras of Kn. Duke Math. J., 32(2):225–232 (1965).MathSciNetMATHCrossRefGoogle Scholar
  242. 243.
    C. G. Cullen and C. A. Hall, Classes of functions on algebras. Canad. J. Math., 18(1):139–146 (1966).MathSciNetMATHCrossRefGoogle Scholar
  243. 244.
    M. Curzio, Una generalizzazionedegli spazi di Sperner. Ricerche. mat., 16(1): 145–153 (1967).MathSciNetMATHGoogle Scholar
  244. 245.
    B. P. Dawkins and I. Halperin, The isomorphism of certain continuous rings. Canad. J. Math., 18(6):1333–1344 (1966).MathSciNetCrossRefGoogle Scholar
  245. 246.
    R. De Marr, Partially ordered fields. Amer. Math. Monthly, 74(4):418–420 (1967).MathSciNetCrossRefGoogle Scholar
  246. 247.
    F. R. De Meyer, Galois theory in rings and algebras. Doct. diss. Univ. Ore.,(1965), 59 pp.Google Scholar
  247. 248.
    F. R. De Meyer, Galois theory in separable algebras over commutative rings. Ill. J. Math., 10(2):287–295 (1966).Google Scholar
  248. 249.
    F. R. De Meyer, Some notes on the general Galois theory of rings. Osaka J. Math., 2(1):117–127 (1965).MathSciNetGoogle Scholar
  249. 250.
    S. E. Dickson, Decomposition of modules. I. Classical rings. Math. Z., 90(1):9–13 (1965).MathSciNetMATHCrossRefGoogle Scholar
  250. 251.
    N. Divinsky, Rings and Radicals, Allen and Unwin, London (1965).MATHGoogle Scholar
  251. 252.
    N. Divinsky and A. Sulinski, Kurosh radicals of rings with operators. Canad. J. Math., 17(2):278–280 (1965).MathSciNetMATHCrossRefGoogle Scholar
  252. 253.
    J. Dixmier, Représentations irréductibles des algèbres de Lie résolubles. J. math. pures et appl., 45 (1):1–66 (1966).MathSciNetMATHGoogle Scholar
  253. 254.
    J. Dixmier, Sur le centre de l’algèbre enveloppant d’une algèbre de Lie. C. r. Acad. sci., 265(15A408–A410 (1967).MathSciNetGoogle Scholar
  254. 255.
    J. Dixmier, Représentations irréductibles des algèbres de Lie nilpotentes. Anais. Acad. brasil. cienc, 35(4):491–519 (1963).MathSciNetMATHGoogle Scholar
  255. 256.
    M. Djabali, Anneau de fractions d’un J-anneau. Semin. Dubreil et Pisot Fac. Sci. Paris, 18 (1):8/01–8/12 (1967).Google Scholar
  256. 257.
    M. Djabali, Demi-groupes nilpotents et radical d’un anneau noethérien ou artinien. C. r. Acad. sci., 264(1):A493–A495 (1967).MathSciNetGoogle Scholar
  257. 258.
    F. Drollinger, Über die Struktur nilpotenter und auflösbarer Liescher Algebren. Comment. math. helv., 42(4):259–284 (1967).MathSciNetMATHCrossRefGoogle Scholar
  258. 259.
    D. Dubois, Modules of sequences of elements of a ring. J. London Math. Soc., 41(1):177–180 (1966).MathSciNetMATHCrossRefGoogle Scholar
  259. 260.
    D. Dubois, A note on David Harrison’s theory of preprimes. Pacif. J. Math., 21(1):15–19 (1967).MATHCrossRefGoogle Scholar
  260. 261.
    F. H. Eckstein, “Some results in ring theory: I. An extension of the Wedderburn-Artim theorem. II. Semigroup methods in ring theory,” Doctoral dissertation, Tulane Univ. (1967), 84pp.Google Scholar
  261. 262.
    F. H. Eckstein, Complete semi-simple rings with ideal neighbourhoods of zero. Arch. Math., 18(6):587–590 (1967).MathSciNetMATHCrossRefGoogle Scholar
  262. 263.
    K. E. Eldridge, Descending chain condition rings with cyclic quasi-regular group. Doct. diss. Univ. Colo. (1965), 63 pp.Google Scholar
  263. 264.
    S. Elliger, Über das Rangproblem bei Körpererweitrungen. J. reine und angew. Math., 221:162–175 (1966).MathSciNetMATHGoogle Scholar
  264. 265.
    S. Elliger, Über galoissche Körpererweiterungen von unendlichem Rang. Math. Ann., 163(4):359–361 (1966).MathSciNetMATHCrossRefGoogle Scholar
  265. 266.
    S. Elliger, Konstruktion einfacher Ringe über einem einfachen Ring. Math. Ann., 176(1):15–27 (1968).MathSciNetMATHCrossRefGoogle Scholar
  266. 267.
    Endliche Gruppen und Liesche Ringe, Ber. 12–18. 7.65. Math. Forschungsinst. Oberwolfach (1965), 9 pp.Google Scholar
  267. 268.
    M. Endo, On the topologies of the rational number field. Comment. math. Univ. St. Pauli, 16(1):11–20 (1967).MathSciNetMATHGoogle Scholar
  268. 269.
    M. Endo, A note on locally compact division rings. Comment, math. Univ. St. Pauli, 14 (1):57–64 (1966).MathSciNetMATHGoogle Scholar
  269. 270.
    I. Enescu, Les algèbres d’ordre cinq associatives, commutatives et à unité principal, à scalaires réels. Nota I. Algèbres indécomposables. Bull. Inst. politechn. Iasi., 13(1):1–2, 13–22 (1967).MathSciNetGoogle Scholar
  270. 271.
    I. Enescu, Asurpa caracterului de algebre polinomiale al unor numere hipercomplexe utilizate in studiul unor oscilatii liniare. Bull. Inst. politehn. Iasi, 12(3/4): 23–28 (1966).MathSciNetGoogle Scholar
  271. 272.
    D. B. Erickson, Orders for finite noncommutative rings. Amer. Math. Monthly, 73(4):376–377 (1966).MathSciNetMATHCrossRefGoogle Scholar
  272. 273.
    W. T. van Est, On Ado’s theorem. Proc. Koninkl. nederl. akad. wet., A69(2): 176–191 (1966).Google Scholar
  273. 274.
    C. Faith, Rings with ascending condition on annihilators. Nagoya Math. J., 27(1):179–191 (1966).MathSciNetMATHGoogle Scholar
  274. 275.
    C. Faith, On Köthe rings. Math. Ann., 164(3):207–212 (1966).MathSciNetMATHCrossRefGoogle Scholar
  275. 276.
    C. Faith and Y. Utumi, Maximal quotient rings. Proc. Amer. Math. Soc., 16(5): 1084–1089 (1965).MathSciNetMATHCrossRefGoogle Scholar
  276. 277.
    G. Fardoux, Bases réduites d’idéaux de A (X). A anneau principal. C. r. Acad. sci., AB262(21):A1146–A1148 (1966).MathSciNetGoogle Scholar
  277. 278.
    J. R. Faulkner, The inner derivations of a Jordan algebra. Bull. Amer. Math. Soc., 73(2):208–210 (1967).MathSciNetMATHCrossRefGoogle Scholar
  278. 279.
    J. Fell, Algebras and fiber bundles. Pacif. J. Math., 16(3):497–503 (1966).MathSciNetMATHCrossRefGoogle Scholar
  279. 280.
    J. Fell and J. Mather, Barely faithful algebras. Amer. Math. Monthly, 72(9): 1001–1003 (1965).MathSciNetMATHCrossRefGoogle Scholar
  280. 281.
    H. Fell and A. J. Goldman, Realization of semi-multiplies as multipliers. Amer. Math. Monthly, 72(6):639–641 (1965).MathSciNetMATHCrossRefGoogle Scholar
  281. 282.
    E. Feller, A type of quasi-Frobenius ring. Canad. Math. Bull., 10 (1):19–27 (1967).MathSciNetMATHCrossRefGoogle Scholar
  282. 283.
    M. Ferrandon, Ultraproduits et anneaux primitifs. Semin. Dubreil et Pisot. Fac. Sci. Paris, 19(2):16/01–16/09 (1967).Google Scholar
  283. 284.
    J. Ferrar, On Lie algebras of type E6. Bull. Amer. Math. Soc., 73 (1):151–155 (1967).MathSciNetMATHCrossRefGoogle Scholar
  284. 285.
    J. Ferrar, Generic splitting fields of composition algebras. Trans. Amer. Math. Soc., 128(3):506–514 (1967).MathSciNetMATHCrossRefGoogle Scholar
  285. 286.
    J. Ferrar, “On Lie algebras of type E6,” Doctoral dissertation, Yale Univ. (1966), 115 pp.; Dissert. Abstr., B27(8):2776 (1967).Google Scholar
  286. 287.
    P. A. Fillmore, An Archimedean property of cardinal algebras. Michigan Math. J., 11(4):365–367 (1967).MathSciNetGoogle Scholar
  287. 288.
    M. Flato and D. Sternheimer, Algèbres unifiantes; application à l’algèbre de Lie du groupe de Poincaré, C. r. Acad. sci., 260(13):3532–3534 (1965).MathSciNetMATHGoogle Scholar
  288. 289.
    I. Fleischer, Ein Satz aus der abstracten Idealtheorie, Avhandl. utg. Norske, Vid-acad., Oslo. I Mat.-Naturvid. kl., 6 (1964), 12 pp.MathSciNetGoogle Scholar
  289. 290.
    I. Fleischer, Note sur les espaces à norme non-archimedienne. Proc. Koninkl. nederl. acad. wet., A68(4):630–631 (1965)MathSciNetGoogle Scholar
  290. 291.
    F. Forelli, Homomorphisms of ideals in group algebras. III. J. Math., 9(3):410–417 (1965).MathSciNetMATHGoogle Scholar
  291. 292.
    E. Fried, Beiträge zur Theorie der Frobenius-Algebren. Math. Ann., 155(4):265–269 (1964).MathSciNetMATHCrossRefGoogle Scholar
  292. 293.
    L. Fuchs, Riesz rings. Math. Ann., 166 (1):24–33 (1966).MathSciNetMATHCrossRefGoogle Scholar
  293. 294.
    L. Fuchs, On partially ordered algebra. I. Colloq. math., 14:115–130 (1964).Google Scholar
  294. 295.
    N. Funayama, Imbedding a regular ring in a regular ring with identity. Nagoya Math. J., 27(1):61–64 (1966).MathSciNetMATHGoogle Scholar
  295. 296.
    G. Galbura and I. D. Ion, Asupra localizàrii descompunerilor primare in subcomutativ. An. Univ. Bucuresti, Ser. stiint. natur. math.-mecan., 15(1):9–16 (1966).MathSciNetMATHGoogle Scholar
  296. 297.
    N. Ganesan, Properties of rings with a finite number of zero divisors. II. Math. Ann., 161(4):241–246 (1965).MathSciNetMATHCrossRefGoogle Scholar
  297. 298.
    E. Gentile, A uniqueness theorem on rings of matrices. J. Algebra, 6(1):131–134 (1967).MathSciNetMATHCrossRefGoogle Scholar
  298. 299.
    C. George and M. Lévy-Nahas, Finite-dimensional representations of some non-semisimple Lie algebras. J. Math. Phys., 7(6):980–988 (1966).MATHCrossRefGoogle Scholar
  299. 300.
    M. Gerstenhaber, On dominance and varieties of commuting matrices. Ann. Math., 73(2):324–348 (1961).MathSciNetMATHCrossRefGoogle Scholar
  300. 301.
    M. Gerstenhaber, On the construction of division rings by the deformations of fields. Proc. Nat. Acad. Sci. U. S. A., 55(4):690–692 (1966).MathSciNetMATHCrossRefGoogle Scholar
  301. 302.
    R. W. Gilmer, Jr., If R(x) is Noetherian, R contains identity. Amer. Math. Monthly, 74(6):700 (1967).MathSciNetMATHCrossRefGoogle Scholar
  302. 303.
    K. Glazek, Algebry -laczne i -algebry. Acta Univ. wratisl., No. 58, pp. 5–19 (1967).MathSciNetGoogle Scholar
  303. 304.
    C. M. Glennie, Some identities valid in special Jordan algebras. Pacif. J. Math., 16(1):47–59 (1966).MathSciNetMATHCrossRefGoogle Scholar
  304. 305.
    A. W. Goldie, Semi-prime rings with maximum condition. Proc. London Math. Soc., 10(38):201–220 (1960).MathSciNetMATHCrossRefGoogle Scholar
  305. 306.
    A. W. Goldie, The structure of prime rings under ascending chain conditions. Proc. London Math. Soc., 8(32):589–608 (1958).MathSciNetMATHCrossRefGoogle Scholar
  306. 307.
    A. W. Goldie, Localization in non-commutative noetherian rings. J. Algebra, 5(1):89–105 (1967).MathSciNetMATHCrossRefGoogle Scholar
  307. 308.
    J. I. Goldman, On a class of nodal noncommutative Jordan algebras. Trans. Amer. Math. Soc., 128(1):176–183 (1967).MathSciNetMATHCrossRefGoogle Scholar
  308. 309.
    O. Goldman and Chin-han Sah, On a special class of locally compact rings. J. Algebra, 4 (1):71–95 (1966).MathSciNetMATHCrossRefGoogle Scholar
  309. 310.
    H. Gonshor, Special train algebras arising in genetics. II. Proc. Edinburgh Math. Soc., 14(4):333–338 (1965).MathSciNetMATHCrossRefGoogle Scholar
  310. 311.
    H. Gonshor, On abstract affine near-rings. Pacif. J. Math., 14(4):1237–1240 (1964).MathSciNetMATHCrossRefGoogle Scholar
  311. 312.
    B. Gordon and T. S. Motzkin, On the zéros of polynomials over division rings. Trans. Amer. Math. Soc., 116(4):218–226 (1965).MathSciNetCrossRefGoogle Scholar
  312. 313.
    R. Gordon, Rings faithfully represented on their left socle. J. Algebra, 7(3):303–342 (1967).MathSciNetMATHCrossRefGoogle Scholar
  313. 314.
    R. Gordon, “Rings faithfully represented on their left socle,” Doctoral. dissertation, Calif. Inst. Technol. (1966), 78 pp.; Dissert. Abstr. B27(5):1542 (1966).Google Scholar
  314. 315.
    E. Granirer and M. Rajagopalan, A note on the radical of the second conjugate algebra of a semigroup algebra. Math. scand., 15(2):163–166 (1965).MathSciNetGoogle Scholar
  315. 316.
    I. Halperin, Regular rank rings. Canad. J. Math., 17(5):709–719 (1965).MathSciNetMATHCrossRefGoogle Scholar
  316. 317.
    I. Halperin, Extension of the rank function. Studia math., 27(3):325–335 (1966).MathSciNetMATHGoogle Scholar
  317. 318.
    I. Halperin, Von Neumann’s manuscript on inductive limits of regular rings. Canad. J. Math., 20(2):477–483 (1968).MathSciNetMATHCrossRefGoogle Scholar
  318. 319.
    H. Halpern, The maximal GCR ideal in an AW-algebra. Proc. Amer. Math.Soc., 17(4):905–914 (1966).Google Scholar
  319. 320.
    A. Hanna, On the ring of integers. Amer. Math. Monthly, 74(10):1241–1243 (1967).MathSciNetMATHCrossRefGoogle Scholar
  320. 321.
    M. Harada, QF-3 and semi-primary PP-rings. I. Osaka J. Math., 2(2):357–368 (1965).MATHGoogle Scholar
  321. 322.
    M. Harada, QF-3 and semi-primary PP-rings. II. Osaka J. Math., 3(1):21–27 (1966).MathSciNetMATHGoogle Scholar
  322. 323.
    M. Harada, Hereditary orders which are dual. J. Math. Osaka City Univ., 14(2): 107–115 (1963).MathSciNetGoogle Scholar
  323. 324.
    M. Harada, On semi-primary PP-rings. Osaka J. Math., 2(1):153–161 (1965).MathSciNetMATHGoogle Scholar
  324. 325.
    M. Harada, Multiplicative ideal theory in hereditary orders. J. Math. Osaka City Univ., 14(2):83–106 (1963).MathSciNetGoogle Scholar
  325. 326.
    M. Harada, Note on orders over which an hereditary order is projective. Osaka J. Math., 4(1):151–156 (1967).MathSciNetMATHGoogle Scholar
  326. 327.
    M. Harada, Supplementary results on Galois extension. Osaka J. Math., 2(2): 343–350 (1965).MathSciNetMATHGoogle Scholar
  327. 328.
    R. Hart, Simple rings with uniform right ideals. J. London Math. Soc., 42(4): 614–617 (1967).MathSciNetMATHCrossRefGoogle Scholar
  328. 329.
    B. Hartley, Locally nilpotent ideals of a Lie algebra. Proc. Cambridge Philos. Soc., 63(2):257–272 (1967).MathSciNetMATHCrossRefGoogle Scholar
  329. 330.
    R. G. Hathway, On non-commutative non-associative algebras. Doct. diss. Univ. Wise. (1966), 76 pp.; Dissert. Abstr., B28(3):1002 (1967).Google Scholar
  330. 331.
    A. Hattori, Simple algebras over a commutative ring. Nagoya Math. J., 27(2): 611–616 (1966).MathSciNetMATHGoogle Scholar
  331. 332.
    A. Hattori, On strongly separable algebras. Osaka J. Math., 2(2):369–372 (1965).MathSciNetMATHGoogle Scholar
  332. 333.
    K. Hauschild, Über die Unentscheidbarkeit nicht assoziativer Schiefringe. Wiss. Z. Hunboldt-Univ. Berlin. Math.-naturwiss. Reihe, 15(5):681–683 (1966).MathSciNetMATHGoogle Scholar
  333. 334.
    K.-H. Helwig, Über Automorphismen und Derivationen von Jordan-Algebren. Proc. Koninkl. nederl. acad. wet., 70:381–394 (1967)MathSciNetMATHGoogle Scholar
  334. 335.
    K.-H. Helwig, Über Mutationen von Jordan-Algebren. Math. Z., Vol. 103, Nos. 1–7 (1968).MathSciNetMATHCrossRefGoogle Scholar
  335. 336.
    K.-H. Helwig, Eine Verallgemeinerung der formal-reelen Jordan-Algebren. Invent. Math., 1(1):18–35 (1966).MathSciNetMATHCrossRefGoogle Scholar
  336. 337.
    R. L. Hemminger, On the Wedderburn principal theorem for commutative power-associative algebras. Trans. Amer. Math. Soc., 121(1):36–51 (1966).MathSciNetMATHCrossRefGoogle Scholar
  337. 338.
    I. N. Herstein, A theorem on left Noetherian rings. J. Math. Analysis and Applic, 15(1):91–96 (1966).MathSciNetMATHCrossRefGoogle Scholar
  338. 339.
    I. N. Herstein, A counterexample in Noetherian rings. Proc. Nat. Acad. Sci. U. S. A., 54(4):1036–1037 (1965).MathSciNetMATHCrossRefGoogle Scholar
  339. 340.
    I. N. Herstein, Anelli alternativied algebre composizione. Rend. Math. e applic., 23(3–4):364–393 (1964).MathSciNetMATHGoogle Scholar
  340. 341.
    I. N. Herstein, Lie and Jordan structures in simple associative rings. Bull. Amer. Math. Soc., 67:517–531 (1961).MathSciNetMATHCrossRefGoogle Scholar
  341. 342.
    I. N. Herstein, Special simple rings with involution. J. Algebra, 6(3):369–375 (1967).MathSciNetMATHCrossRefGoogle Scholar
  342. 343.
    I. N. Herstein and L. Small, Nil rings satisfying certain chain conditions; an addendum. Canad. J. Math., 18(2):300–302 (1966).MathSciNetMATHCrossRefGoogle Scholar
  343. 344.
    K. Hirata and K. Sugano, On semisimple extensions and separable extensions overnon-commutative rings. J. Math. Soc. Japan, 18(4):360–373 (1968).MathSciNetCrossRefGoogle Scholar
  344. 345.
    R. D. Hirsch, A note on non-commutative polynomial rings subject to degreepreservation. J. London Math. Soc., 42(2):333–333 (1967).MathSciNetMATHCrossRefGoogle Scholar
  345. 346.
    G. Hochschild, An addition to Ado’s theorem. Proc. Amer. Math. Soc., 17(2): 531–533 (1966).MathSciNetMATHGoogle Scholar
  346. 347.
    P. Holgate, Sequences of powers in genetic algebras. J. London Math. Soc., 42(3): 489–496 (1967).MathSciNetMATHCrossRefGoogle Scholar
  347. 348.
    P. Holgate, Genetic algebras associated with polyploidy. Proc. Edinburgh Math. Soc., 15(1):1–9 (1966).MathSciNetMATHCrossRefGoogle Scholar
  348. 349.
    P. Holgate, The genetic algebra k linked loci. Proc. London Math. Soc., 18(3): 315–327 (1968).MathSciNetMATHCrossRefGoogle Scholar
  349. 350.
    P. Holgate, Jordan algebras arising in population genetics. Proc. Edinburgh Math. Soc., 15(4):291–294 (1967).MathSciNetMATHCrossRefGoogle Scholar
  350. 351.
    W. G. van Hoorn and B. van Rootselaar, Fundamental notions in the theory of seminearrings. Compositio math., 18(1–2):65–78 (1966).Google Scholar
  351. 352.
    Pang-chieh Hsieh, Rings with semi-minimum condition. Scientia sinica, 14(3): 343–362 (1965).MathSciNetGoogle Scholar
  352. 353.
    M. M. Humm, On a class of right alternative rings without nilpontent ideals. J. Algebra, 5(2):164–175 (1967).MathSciNetMATHCrossRefGoogle Scholar
  353. 354.
    M. M. Humm and E. Kleinfeld, On extensions of Cayley algebras. Proc. Amer. Math. Soc., 17(5):1203–1205 (1966).MathSciNetMATHCrossRefGoogle Scholar
  354. 355.
    M. M. Humm and E. Kleinfeld, On free alternative rings. J. Combin. Theory, 2(2):140–144 (1967).MathSciNetMATHCrossRefGoogle Scholar
  355. 356.
    K. Hunter, Nilpotence of nil subrings implies more general nilpotence. Arch. Math., 18(2):136–139 (1967).MATHCrossRefGoogle Scholar
  356. 357.
    M. S. Huzurbazar, The multiplicative group of a division ring. Math. Student, 32(1–2):7–10 (1964).MathSciNetMATHGoogle Scholar
  357. 358.
    M. Ikeda, Über die einstufig nichtkommutativen Ringe. Nagoya Math. J., 27(1): 371–379 (1966).MathSciNetMATHGoogle Scholar
  358. 359.
    E. C. Ingraham, On the existence of inertial subalgebras. Doct. diss. Univ. Ore., (1965), 52 pp.; Dissert. Abstr., 26(8):4690–4691 (1966).Google Scholar
  359. 360.
    E. C. Ingraham, Inertial subalgebras of algebras over commutative rings. Trans. Amer. Math. Soc., 124(1):77–93 (1966).MathSciNetMATHCrossRefGoogle Scholar
  360. 361.
    D. B. Ion, Asupra algebrelor Jordan de tip A. Studii si cercetri mat. Acad. RPR, 17(2):301–310 (1965).MathSciNetMATHGoogle Scholar
  361. 362.
    D. B. Ion, Asupra unor proprietti ale constantelor de structur ale algebrelor Jordan de tip A. Studii i cercetri mat. Acad. RPR, 19(7):1031–1038 (1967).MathSciNetGoogle Scholar
  362. 363.
    D. B. Ion, Asupra unor proprieti ale rdcinilor algebrelor Jordan de tip A. Studii i cercetri mat. Acad. RPR, 18(2):309–313 (1966).MathSciNetMATHGoogle Scholar
  363. 364.
    I. D. Ion, Radicalul limitei projective de inele asociative. Studdi i cercetari. mat. Acad. RPR, 16(6):1141–1145 (1964).MathSciNetMATHGoogle Scholar
  364. 365.
    R. Iordnesku, Sur des représentations des algèbres A1m, n. Rev. romaine mat. pures et appl., 10(9):1403–1421 (1965).Google Scholar
  365. 366.
    R. Iordnesku, Les représentations quasi-irrèducibles des algèbres Am. n dans des algèbres Aqm, n. Rev. romaine math. pures et appl., 10(10):1583–1591 (1965).Google Scholar
  366. 367.
    R. Iordnesku, Les représentations quasi-irréductibles des algèbres A3m, n. Rev. roumaine math. pures et appl., 11(7):843–845 (1966).Google Scholar
  367. 368.
    J. R. Isbell, Embedding two ordered rings in one ordered ring, Part I. J. Algebra, 4(3):341–364 (1966).MathSciNetMATHCrossRefGoogle Scholar
  368. 369.
    N. Jacobson, Structure theory for a class of Jordan algebras. Proc. Nat. Acad. Sci. U.S.A., 55(2):243–251 (1966).MathSciNetMATHCrossRefGoogle Scholar
  369. 370.
    N. Jacobson, Cartan subalgebras of Jordan algebras. Nagoya Math. J., 27(2):591–609 (1966).MathSciNetMATHGoogle Scholar
  370. 371.
    N. Jacobson, Associative algebras with involution and Jordan algebras. Proc. Koninkl. nederl. akad. wet., A69(2):202–212 (1966)Google Scholar
  371. 372.
    N. R. Jacobson, Homomorphism of Jordan rings of self-adjoint elements. Trans. Amer. Math. Soc., 72:310–322 (1952).MathSciNetMATHCrossRefGoogle Scholar
  372. 373.
    S. K. Jain, Polynomial rings with a pivotal monomial. Proc. Amer. Math. Soc., 17(4):942–945 (1966).MathSciNetMATHCrossRefGoogle Scholar
  373. 374.
    S. K. Jain, Rings with constraints. Math. Student., 34(3–4):175–178 (1966).MathSciNetMATHGoogle Scholar
  374. 375.
    S. K. Jain, On unitary of ïï-unitary rings. Publs. math., 11(1):241–244 (1964).MATHGoogle Scholar
  375. 376.
    J. P. Jans, On orders in quasi-Frobenius rings. J. Algebra, 7 (1):35–43 (1967).MathSciNetMATHCrossRefGoogle Scholar
  376. 377.
    G. J. Janusz, Primitive idempotents in group algebras. Proc. Amer. Math. Soc., 17(2):520–523 (1966).MathSciNetMATHCrossRefGoogle Scholar
  377. 378.
    T. L. Jenkins, Another characterization of the Jacobson radical. Amer. Math. Monthly, 74(10):1237 (1967).MathSciNetMATHCrossRefGoogle Scholar
  378. 379.
    T. L. Jenkins, The upper radical determined by regular rings. Amer. Math. Monthly, 74(10):1240 (1967).MathSciNetMATHCrossRefGoogle Scholar
  379. 380.
    W. E. Jenner, On regular automorphisms of algebras. Portug. math., 24(1–2): 47–48 (1965).MathSciNetMATHGoogle Scholar
  380. 381.
    Ch. U. Jensen, A remark on semi-hereditary local rings. J. London Math. Soc., 41(3):479–482 (1966).MathSciNetMATHCrossRefGoogle Scholar
  381. 382.
    A. Johnson, Order in logic and integral domains. Amer. Math. Monthly, 72(4): 386–390 (1965).MathSciNetMATHCrossRefGoogle Scholar
  382. 383.
    D. G. Johnson, The completion of an archimedean ƒ-ring. J. London Math. Soc., 40(3):493–496 (1965).MathSciNetMATHCrossRefGoogle Scholar
  383. 384.
    R. E. Johnson, Rings with zero right and left singular ideals. Trans. Amer. Math. Soc., 118(6):150–157 (1965).MathSciNetMATHCrossRefGoogle Scholar
  384. 385.
    R. E. Johnson, Remarks on a paper of Procesi. J. Algebra, 2 (1):38–41 (1965).MathSciNetMATHCrossRefGoogle Scholar
  385. 386.
    R. E. Johnson, Unique factorization in a principal right ideal domain. Proc. Amer. Math. Soc., 16(3):526–528 (1965).MathSciNetMATHCrossRefGoogle Scholar
  386. 387.
    R. E. Johnson, Prime matrix rings. Proc. Amer. Math. Soc., 16(5):1099–1105 (1965).MathSciNetMATHCrossRefGoogle Scholar
  387. 388.
    W. R. Johnstone, Generalized Hilbert functions and resolutions associated with maximal one-sided ideals. Math. Z., 98(3):243–258 (1967).MathSciNetMATHCrossRefGoogle Scholar
  388. 389.
    T. Kanzaki, On galois algebra over a commutative ring. Osaka J. Math., 2:309–317 (1965).MathSciNetMATHGoogle Scholar
  389. 390.
    T. Kanzaki, On Galois extension of rings. Nagoya Math. J., 27 (1):43–49 (1966).MathSciNetMATHGoogle Scholar
  390. 391.
    T. Kanzaki, On commutator rings and Galois theory of separable algebras. Osaka J. Math., 1(1):103–115 (1964).MathSciNetMATHGoogle Scholar
  391. 392.
    T. Kanzaki, Special type of separable algebra over a commutative ring. Proc. Japan Acad., 40(10):781–786 (1964).MathSciNetMATHCrossRefGoogle Scholar
  392. 393.
    I. Kaplansky, Lie Algebras, Lectures in Modern Mathematics, Vol. 1, Wiley, New York (1963), pp. 115–132.MathSciNetGoogle Scholar
  393. 394.
    H. Karzel, Unendliche Dicksonsche Fastkörper. Arch. Math., 16(4):247–256 (1965).MathSciNetMATHCrossRefGoogle Scholar
  394. 395.
    F. Kasch, Projective Frobenius-Erweiterungen. Sitzungsber. Heidelberg. Akad. Wiss. Math., naturwiss. Kl., No. 4 (1961), 23 pp.Google Scholar
  395. 396.
    S. Kass, “On a class of generalized alternative algebras,” Doctoral dissertation, III. Inst. Technol. (1966), 40 pp.; Dissert. Abstr., B27(6):2032 (1966).Google Scholar
  396. 397.
    P. Katz and E. G. Straus, Infinite sums in algebraic structures. Pacif. J. Math., 15(1):181–190 (1965).MathSciNetMATHCrossRefGoogle Scholar
  397. 398.
    Y. Kawada, On Köthe’s problem concerning algebras for which every indecomposable module is cyclic III. Sci. Repts. Tokyo Kyoiku Daigaku A, 8(196–201): 1–250 (1965).MathSciNetGoogle Scholar
  398. 399.
    S. M. Kaye, Ring theoretic properties of matrix rings. Canad. Math. Bull., 10(3):365–374 (1967).MathSciNetMATHCrossRefGoogle Scholar
  399. 400.
    O. H. Kegel, On rings that are sums of two subrings. J. Algebra, 1(2):103–109 (1964).MathSciNetMATHCrossRefGoogle Scholar
  400. 401.
    A. Kertész, On the existence of a left unit element in a noetherian or in an artinian ring. Bull. Acad. polon. sci. Sec. sci. math., astron. et phys., 14(12): 671–672 (1966).MATHGoogle Scholar
  401. 402.
    A. Kertész, Gyürük Jacobson-féle radikáljától. Magyar. tyd. akad. Mat. és fiz. tud. oszt. közl., 16(4):445–461 (1966).MATHGoogle Scholar
  402. 403.
    T. P. Kezlan, A note on higher commutators of bounded nilpotence. Amer. Math. Monthly, 73(6):632–633 (1966).MathSciNetMATHCrossRefGoogle Scholar
  403. 404.
    T. P. Kezlan, Rings nil commutator ideals. Doct. diss. Univ. Kans. (1964), 26 pp.; Dissert. Abstr., 26(1):389 (1965).Google Scholar
  404. 405.
    T. P. Kezlan, Rings in which certain subsets satisfy polynomial identities. Trans. Amer. Math. Soc., 125(3):414–421 (1966).MathSciNetMATHCrossRefGoogle Scholar
  405. 406.
    A. A. Klein, Rings nonembeddable in fields with multiplicative semigroups imbeddable in groups. J. Algebra, 7(1):100–125 (1967).MathSciNetMATHCrossRefGoogle Scholar
  406. 407.
    I. Kleiner, A counterexample to a conjecture of D. F. Sanderson. Canad. Math. Bull., 9(4):517 (1966).MathSciNetCrossRefGoogle Scholar
  407. 408.
    M. Knebusch, Der Begriff der Ordnung einer Jordanalgebra. Abhandl. Math. Semin. Univ. Hamburg, 28(3–4):168–184 (1965).MathSciNetMATHCrossRefGoogle Scholar
  408. 409.
    M. Knebusch, Eine Klasse von Ordnungen in Jordanalgebren vom Grade 3. Abhandl. Math. Semin. Univ. Hamburg, 28(3–4):185–207 (1965).MathSciNetMATHCrossRefGoogle Scholar
  409. 410.
    J. Knopfmacher, On the isomorphism problem for Lie algebras. Proc. Amer. Math. Soc., 18(5):898–901 (1967).MathSciNetMATHCrossRefGoogle Scholar
  410. 411.
    M. A. Knus, Sur une classe d’algèbres filtrées. Comment, math. helv., 42(2): 111–131 (1967).MathSciNetMATHCrossRefGoogle Scholar
  411. 412.
    D. E. Knuth, Finitesemifields and projective planes. J. Algebra, 2(2):182–217 (1965).MathSciNetMATHCrossRefGoogle Scholar
  412. 413.
    S. Kobayashi and T. Nagano, On filtered Lie algebras and geometric structures. Ill. J. Math. and Mech., 14(4):697–707 (1965).Google Scholar
  413. 414.
    S. Kobayashi and T. Nagano, A Report on Filtered Lie Algebras, Proceedings U.S.-Japan Sem. Differential Geometry, Kyoto (1965): Tokoyo Nippon Hyoronsha Co., Ltd. (1966), pp. 63–70.Google Scholar
  414. 415.
    M. Koecher, On homogeneous algebras. Bull. Amer. Math. Soc., 72(3):347–357 (1966).MathSciNetMATHCrossRefGoogle Scholar
  415. 416.
    M. Koecher, Imbedding of Jordan algebras into Lie algebras. I. Amer. J. Math., 89(3):787–816 (1967).MathSciNetMATHCrossRefGoogle Scholar
  416. 417.
    K. Koh, On a semi-prime self-injective ring. Amer. Math. Monthly, 74(6):687–688 (1967).MathSciNetMATHCrossRefGoogle Scholar
  417. 418.
    K. Koh, On simple rings with uniform right ideals. Amer. Math., Monthly, 74(6): 685–687 (1967).MathSciNetMATHCrossRefGoogle Scholar
  418. 419.
    K. Koh, On some characteristic properties of self-injective rings. Proc. Amer. Math. Soc., 19(1):209–213 (1968).MathSciNetMATHCrossRefGoogle Scholar
  419. 420.
    K. Koh, On a semi-primary ring. Proc. Amer. Math. Soc., 19(1):205–208 (1968).MathSciNetMATHCrossRefGoogle Scholar
  420. 421.
    K. Koh, On very large one-sided ideals of a ring. Canad. Math. Bull., 9(2): 191–196 (1966).MathSciNetMATHCrossRefGoogle Scholar
  421. 422.
    K. Koh, On simple rings with maximal annihilator right ideals. Canad. Math. Bull., 8(5):667–668 (1965).MathSciNetMATHCrossRefGoogle Scholar
  422. 423.
    K. Koh, A note on a certain class of prime rings. Amer. Math. Monthly, 72(1): 46–48 (1965).MathSciNetMATHCrossRefGoogle Scholar
  423. 424.
    K. Koh, On the class of rings which do not contain nonzero semi-singular ideals. Amer. Math. Monthly, 72(8):875–877 (1965).MathSciNetMATHCrossRefGoogle Scholar
  424. 425.
    K. Koh, On the set of zero divisors of a topological ring. Canad. Math. Bull., 10(4):595–596 (1967).MathSciNetMATHCrossRefGoogle Scholar
  425. 426.
    K. Koh, On properties of rings with a finite number of zero divisors. Math. Ann., 171(1):79–80 (1967).MathSciNetMATHCrossRefGoogle Scholar
  426. 427.
    K. Koh and A. Mewborn, The weak radical of a ring. Proc. Amer. Math. Soc., 18(3):554–559 (1967).MathSciNetMATHCrossRefGoogle Scholar
  427. 428.
    K. Koh and A. Mewborn, Prime rings with maximal annihilator and maximal complement right ideals. Proc. Amer. Math. Soc., 16(5):1073–1076 (1965).MathSciNetMATHCrossRefGoogle Scholar
  428. 429.
    C. W. Kohls, Properties inherited by ring extensions. Mich. Math. J., 12(4): 399–404 (1965).MathSciNetMATHCrossRefGoogle Scholar
  429. 430.
    C. W. Kohls, On convex ideals. Proc. Amer. Math. Soc., 18(2):359–363 (1967).MathSciNetMATHCrossRefGoogle Scholar
  430. 431.
    B. Kolman, Semi-modular Lie algebras. J. Sci. Hiroshima Univ., Ser. A, Div. I., 29(2):149–163 (1961).MathSciNetGoogle Scholar
  431. 432.
    B. Kolman, Relatively complemented Lie algebras. J. Sci. Hiroshima Univ., Ser. A, Div. I., 31(1):1–11 (1967).MathSciNetMATHGoogle Scholar
  432. 433.
    L. Konguetsof, Certaines propositions sur les annoïdes. Constructions d’annoïdes. Bull. Soc. Math. Belg., 19(2):179–193 (1967).MathSciNetMATHGoogle Scholar
  433. 434.
    F. Kosier, Certain algebras of degree one. Pacif. J. Math., 15(2):541–544 (1965).MathSciNetMATHCrossRefGoogle Scholar
  434. 435.
    B. Kostant and A. Novikoff, A homomorphism in exterior algebra. Canad. J. Math., 16 (1):166–168 (1964).MathSciNetMATHCrossRefGoogle Scholar
  435. 436.
    H. F. Kreimer, Galois theory for noncommutative rings and normal bases. Trans. Amer. Math. Soc., 127(1):42–49 (1967).MathSciNetMATHCrossRefGoogle Scholar
  436. 437.
    H. F. Kreimer, A Galois theory for noncommutative rings. Trans. Amer. Math. Soc., 127(1):29–41 (1967).MathSciNetMATHCrossRefGoogle Scholar
  437. 438.
    H. F. Kreimer, The foundations for an extension of differential algebra. Trans. Amer. Math. Soc., 111(3):482–492 (1964).MathSciNetMATHCrossRefGoogle Scholar
  438. 439.
    E. Kreindler, Opérateurs additifs dans les modules unitares a base dénombrable. Bull. math. Soc. sci. math. RSR, 9(4):333–336 (1965).MathSciNetGoogle Scholar
  439. 440.
    J. L. Krivine, Anneaux préordonnés. J. analyse math., 12:307–326 (1964).MathSciNetMATHCrossRefGoogle Scholar
  440. 441.
    R. L. Kruse, “Rings with periodic additive group in which all subrings are ideal,” Doctoral dissertation, Calif. Inst. Technol. (1964) 56 pp.; Dissert. Abstr. 25(8): 4725 (1965).Google Scholar
  441. 442.
    E. G. Kundert, Structure theory in s-d-rings. Atti Accad. naz. Lincei Rend. Cl. sci.fis.,mat. e natur., 41(5):270–278 (1966).MathSciNetMATHGoogle Scholar
  442. 443.
    E. Kunz, Gruppenringe und Differentiale. Math. Ann., 163(4):346–350 (1966).MathSciNetMATHCrossRefGoogle Scholar
  443. 444.
    H. Kupisch, Symmetrische Algebren mit endlich vielen unzerlegbaren Darstellungen. I. J. reine und angew. Math., 219(1–2):1–25 (1965).MathSciNetMATHGoogle Scholar
  444. 445.
    H. Kupisch, Über Klasse von Ringen mit Minimalbedingung I. Arch. Math., 17(1):20–35 (1966).MathSciNetMATHCrossRefGoogle Scholar
  445. 446.
    Y. Kurata, On an additive ideal theory in a non-associative ring. Math. Z., 88(2):129–135 (1965).MathSciNetMATHCrossRefGoogle Scholar
  446. 445.
    J. P. Lafon, Spectre premier bilatère de l’anneaux des endomorphismes d’un module de type fini. C. r. Acad. sci., AB262(20):A1098–A1099 (1966).MathSciNetGoogle Scholar
  447. 448.
    J. P. Lafon, Représentation d’algèbres comme quotines d’anneaux d’endomorphismes. Bull. sci. math., 91(1–2):13–16 (1967).MathSciNetMATHGoogle Scholar
  448. 449.
    J. Lambek, On the ring of quotients of a noetherian ring. Canad. Math. Bull., 8(3):279–290 (1965).MathSciNetMATHCrossRefGoogle Scholar
  449. 450.
    J. Lambek, Lectures on Rings and Modules, Blaisdell, Waltham (Mass.) (1966), Vol. 8, 183 pp.MathSciNetGoogle Scholar
  450. 451.
    W. M. Lambert, Jr., Effectiveness, elementary definability, and prime polynomial ideals. Doct. diss. Univ. Calif. Los Angeles, 26(6):3371–3372 (1965).Google Scholar
  451. 452.
    D. R. La Torre, On h-ideals and k-ideals in hemirings. Publs. Math., 12(1–4): 219–226 (1965).MATHGoogle Scholar
  452. 453.
    D. R. La Torre, On the radical of a hemiring. Doct. diss. Univ.Tenn. (1964), 111 pp.; Dissert. Abstr., 25(5):3001 (1964).Google Scholar
  453. 454.
    D. A. Lawver, “Left ideal axioms for non-associative rings,” Doctoral dissertation Univ. Wisconsin (1967) 71 pp.; Dissert. Abstr. B28(3):1002 (1967).Google Scholar
  454. 455.
    R. R. Laxton, Prime ideals and the ideal-radical of a distributively generated near-ring. Math. Z., 83 (1):8–17 (1964).MathSciNetMATHCrossRefGoogle Scholar
  455. 456.
    W. G. Leavitt, Sets of radical classes. Publs. math., 14(1–4):321–324 (1967).MathSciNetMATHGoogle Scholar
  456. 457.
    W. G. Leavitt and E. P. Armendariz, Nonhereditary semisimple classes. Proc. Amer. Math. Soc., 18(6):1114–1118 (1967).MathSciNetMATHCrossRefGoogle Scholar
  457. 458.
    L. C. A. van Leeuwen, Holomorphe von endlichen Ringen. Proc. Koninkl. nederl. akad. wet., A68(4):632–634 (1965)Google Scholar
  458. 459.
    D. Legrand, Formes quadratiques et algebres quadratiques. C. r. Acad. sci., 265(23):A764–A767 (1967).MathSciNetGoogle Scholar
  459. 460.
    L. Lesieur, Sur les anneaux tels que xn = x. Semin. Dubreil et Pisot. Fac. Sci. Paris, 19(2):13/01–13/08 (1967).Google Scholar
  460. 461.
    J. Lewin, Subrings of finite index in finitely generated rings. J. Algebra, 5(1): 84–88 (1967).MathSciNetMATHCrossRefGoogle Scholar
  461. 462.
    J. Lewin and T. Lewin, On ideals of free associative algebras generated by a single element. J. Algebra, 9(2):248–255 (1968).MathSciNetCrossRefGoogle Scholar
  462. 463.
    Gen-dao Li, On Weyl groups of real semisimple Lie algebras and their application to the classification of maximal solvable subalgebras with respect to inner conjugation. Chinese Math., 8 (1):74–89 (1966).Google Scholar
  463. 464.
    F. E. J. Linton, The obstruction to the localizability of a measure space. Bull. Amer. Math. Soc., 71(2):353–356 (1965).MathSciNetMATHCrossRefGoogle Scholar
  464. 465.
    Shao-hsueh Liu, On algebras in which each subalgebra is an ideal. Sci. Abstrs. China. Math. and Phys. Sci., Vol. 2, Nos. 4–7 (1964).Google Scholar
  465. 466.
    Hool-tong Loh, Notes on semirings. Math. Mag., 40(3):150–152 (1967).MathSciNetCrossRefGoogle Scholar
  466. 467.
    O. Loos, Über eine Beziehung zwischen Malcev-Algebren und Lie-Tripelsystemen. Pacif. J. Math., 18(3):553–562 (1966).MathSciNetMATHCrossRefGoogle Scholar
  467. 468.
    H. P. Lorenzen, Mutationsinvariante Unteralgebren von Jordan-Algebren. Math. Ann., 171 (1):54–60 (1967).MathSciNetMATHCrossRefGoogle Scholar
  468. 469.
    H. P. Lorenzen, Quadratische Darstellungen in Jordan Algebren. Abhandl. Math. Semin. Univ. Hamburg, 28(1–2):115–123 (1965).MathSciNetMATHCrossRefGoogle Scholar
  469. 470.
    N. Losey, Useful theorems on commutative non-associative algebras. Proc. Edinburgh Math. Soc., 15(3):203–208 (1967).MathSciNetMATHCrossRefGoogle Scholar
  470. 471.
    R. J. Loy, A note on the preceding paper by J. B. Miller. Acta scient. math., 28(l-2):233–236 (1967).MathSciNetMATHGoogle Scholar
  471. 472.
    T. Luchian, “Observatii asupra inelor slabe,“ An. tiin. Univ. Iai, Sec. Ia, 11b: 99–111 (1965).MathSciNetGoogle Scholar
  472. 473.
    T. Luchian, “Homomorfismeinineleslabe,” An. tiini.Univ. Iai, Sec. Ia, 13(1): 17–28 (1967).MathSciNetMATHGoogle Scholar
  473. 474.
    T. Luchian, “Asupra algebrelor slabe de ordin 3, cu diviziune,” An. tiin. Univ. Iasi, Sec. Ia, 10 (1):29–42 (1964).MathSciNetMATHGoogle Scholar
  474. 475.
    T. Luchian, “Asupra unor algebre slabe generalizate de ordin 2,” An. stiint. Univ. Iasi, Sec. Ia, 12 (1):19–36 (1966).MathSciNetMATHGoogle Scholar
  475. 476.
    A. S.-T. Lue, Crossed homomorphisms of Lie algebras. Proc. Cambridge Philos. Soc., 62(4):577–581 (1966).MathSciNetMATHCrossRefGoogle Scholar
  476. 477.
    Jiang Luh, On the structure of J-rings. Amer. Math. Monthly., 74(2):164–166 (1967).MathSciNetCrossRefGoogle Scholar
  477. 478.
    Jiang Luh, An elementary proof of a theorem of Herstein. Math. Mag., 38(2): 105–106 (1965).MathSciNetCrossRefGoogle Scholar
  478. 479.
    Jiang Luh, On the commutativity of J-rings. Canad. J. Math., l9(6):l289-l292 (1967).MathSciNetGoogle Scholar
  479. 480.
    J. G. MacDonald, Jordan algebra with three generators. Proc. London Math. Soc., 10(3):395–408 (1960).MathSciNetMATHCrossRefGoogle Scholar
  480. 481.
    L. A. Machtinger, “Rings with not necessarily transitive order relation,” Doctoral dissertation, Washington Univ. (1965)Google Scholar
  481. 482.
    J. J. Malone, Jr., Near-rings with trivial multiplications. Amer. Math. Monthly, 74(9):1111–1112 (1967).MathSciNetMATHCrossRefGoogle Scholar
  482. 483.
    J.-M. Maranda, Injective structures. Trans. Amer. Math. Soc., 110(1):98–135 (1964).MathSciNetMATHCrossRefGoogle Scholar
  483. 484.
    E. Marshall, The Frattini subalgebra of a Lie algebra. J. London. Math. Soc., 42(3):416–422 (1967).MathSciNetMATHCrossRefGoogle Scholar
  484. 485.
    G. E. Martin, On Mammana division rings. Matematiche, 20(1):1–6 (1965).MATHGoogle Scholar
  485. 486.
    W. S. Martindale, Jordan homomorphisms of the symmetric elements of a ring with involution. J. Algebra, 5(2):232–249 (1967).MathSciNetMATHCrossRefGoogle Scholar
  486. 487.
    H. Marubayashi, A remark on components of ideals in noncommutative rings. Proc. Japan Acad., 43(1):11–12 (1967).MathSciNetMATHCrossRefGoogle Scholar
  487. 488.
    K. Mathiak, Zur Theorie nicht endlichdimensionaler Jordanalgebren über einem Körper eine Charakteristik 2. J. reine und angew. Math., 224:185–210 (1966).MathSciNetMATHGoogle Scholar
  488. 489.
    I. G. Maurer and L. Purdea, Unele pentru care submodulele sint subinele. Studia Univ. Babes-Bolyai. Ser. math. phys., 9(2):13–15 (1964).MathSciNetMATHGoogle Scholar
  489. 490.
    J. P. May, The cohomology of restricted Lie algebras and of Hopf algebras. J. Algebra, 3(2):123–146 (1966).MathSciNetMATHCrossRefGoogle Scholar
  490. 491.
    K. O. May, The impossibility of a division algebra of vectors in three dimensional space. Amer. Math. Monthly, 73(3):289–291 (1966).MathSciNetCrossRefGoogle Scholar
  491. 492.
    C. J. Maxson, On finite near-rings with identity. Amer. Math. Monthly, 74(10): 1228–1230 (1967).MathSciNetMATHCrossRefGoogle Scholar
  492. 493.
    P. J. McCarthy, Note on primary ideal decompositions. Canad. J. Math., 18(5): 950–952 (1966).MathSciNetMATHCrossRefGoogle Scholar
  493. 494.
    P. J. Mc-Carthy, General graded rings. Monatsh. Math., 69(3):208–214 (1965).MathSciNetCrossRefGoogle Scholar
  494. 495.
    J. McConnel, The intersection theorem for a class of noncommutative rings. Proc. London Math. Soc., 17(3):487–498 (1967).MathSciNetCrossRefGoogle Scholar
  495. 496.
    N. H. Mc-Coy, The Theory of Rings, Macmillan, New York (1964), 161 pp.; Brit. Nat. Bibliogr. No. 174, p. 12 (1964).Google Scholar
  496. 497.
    K. M. McCrimmon, A note on quasi-associative algebras. Proc. Amer. Math. Soc., 17(6):1455–1459 (1966).MathSciNetCrossRefGoogle Scholar
  497. 498.
    K. M. McCrimmon, “Norms and non-commutative Jordan algebras,” Doctoral dissertation, Yale Univ. (1965) 76 pp.Google Scholar
  498. 499.
    K. M. McCrimmon, Norms and noncommutative Jordan algebras. Pacif. J. Math., l5(3):925–927 (1965).MathSciNetCrossRefGoogle Scholar
  499. 500.
    K. M. McCrimmon, Structure and representations of noncommutative Jordan algebras. Trans. Amer. Math. Soc., 121(1):187–199 (1966).MathSciNetCrossRefGoogle Scholar
  500. 501.
    K. M. McCrimmon, Macdonald’s theorem with inverses. Pacif. M. Math., 21(2): 315–325 (1967).MathSciNetCrossRefGoogle Scholar
  501. 502.
    K. M. McCrimmon, A proof of Schafer’s conjecture for infinite-dimensional forms admitting composition. J. Algebra, 5(1):72–83 (1967).MathSciNetCrossRefGoogle Scholar
  502. 503.
    K. M. McCrimmon, Finite power-associative division rings. Proc. Amer. Math. Soc., 17(5):1173–1177 (1966).MathSciNetCrossRefGoogle Scholar
  503. 504.
    K. M. McCrimmon, A general theory of Jordan rings. Proc. Nat. Acad. Sci. U.S.A., 56(4):1072–1079 (1966).MathSciNetCrossRefGoogle Scholar
  504. 505.
    K. M. McCrimmon and R. Schafer, On a class of noncommutative Jordan algebras. Proc. Nat. Acad. Sci. U. S. A., 56 (1):1–4 (1966).MathSciNetCrossRefGoogle Scholar
  505. 506.
    W. A. McWorter, Some simple properties of simple nil rings. Canad. Math. Bull., 9(2):197–200 (1966).MathSciNetCrossRefGoogle Scholar
  506. 507.
    R. A. Melter, A note on geometry in a p-ring. Amer. Math. Monthly, 73(9): 983–986 (1966).MathSciNetMATHCrossRefGoogle Scholar
  507. 508.
    K. Meyberg, Ein Satz über Mutationen von Jordan-Algebren. Math. Z., 90(4): 260–267 (1965).MathSciNetMATHCrossRefGoogle Scholar
  508. 509.
    K. Meyberg, Über die Killing-Form in Jordan-Algebren. Math. Z., 89 (1):52–73 (1965).MathSciNetMATHCrossRefGoogle Scholar
  509. 510.
    K. Meyberg, Über die Lie-Algebren der Derivationen und der linksregulären Darstellungen in zentral-einfachen Jordan-Algebren. Math. Z., 93(1):37–47 (1966).MathSciNetMATHCrossRefGoogle Scholar
  510. 511.
    G. Michler, Radikale und Sockel. Math. Ann., 157(1):1–48 (1966).MathSciNetCrossRefGoogle Scholar
  511. 512.
    G. Michler, On maximal nilpotent subrings of right Noetherian rings. Glasgow Math. J., 8(2):89–101 (1967).MathSciNetMATHCrossRefGoogle Scholar
  512. 513.
    G. Michler, Halberbliche, fastlokale Ordnungen in eifachen Artinringen. Arch. Math., 18(5):456–464 (1967).MathSciNetMATHCrossRefGoogle Scholar
  513. 514.
    G. Michler, Der Satz von Artin-Wedderburn und der Satz von Goldie. Math. Ann., 163(4):299–304 (1966).MathSciNetMATHCrossRefGoogle Scholar
  514. 515.
    G. Michler, Klassische Quotientenringe von nicht notwentig endlichdimensionalen halbprimen Ringen. Math. Z., 91(4):314–335 (1966).MathSciNetMATHCrossRefGoogle Scholar
  515. 516.
    G. Michler, Kleine Ideale, Radikale und die Eins in Ringen. Publs. mat., 12(1–4): 231–252 (1965).MathSciNetMATHGoogle Scholar
  516. 517.
    G. Michler, Characterisierung einer Klasse von Noetherschen Ringen. Math. Z., 100(2):163–182 (1967).MathSciNetMATHCrossRefGoogle Scholar
  517. 518.
    J. B. Miller, Homomorphisms, higher derivations and derivations on associative algebras. Acta. scient. math., 28(1–2):221–231 (1967).MATHGoogle Scholar
  518. 519.
    A. Mirbagheri, “Finiteness in radical algebras,” Doctural dissertation, Ind. Univ. (1965), 35 pp.; Dissert. Abstr. 26(11):6746 (1966).Google Scholar
  519. 520.
    H. Y. Mochizuki, Finitistic global dimension for rings. Pacif. J. Math., 15(1): 249–258 (1965).MathSciNetMATHCrossRefGoogle Scholar
  520. 521.
    H. Y. Mochizuki, On the double commutator algebra of QF-3 algebras. Nagoya Math. J., vol. 25, pp. 221–230 (March, 1965).MathSciNetMATHGoogle Scholar
  521. 522.
    R. L. Moore, “Derivation algebras of a class of Jordan algebras,” Doctoral dissertation, Univ. of Virginia (1966) 60 pp.; Dissert. Abstr., B27(8):2786–2787 (1967).Google Scholar
  522. 523.
    K. Morita, Adjoint pairs of functors and Frobenius extensions. Sci. Perts. Tokyo Kyoiku Daigaku, A9(202–208):40–71 (1965).Google Scholar
  523. 524.
    K. Morita, On S-rings in the sense of F. Kasch. Nagoya Math. J., 27(2):687–695 (1966).MATHGoogle Scholar
  524. 525.
    K. Morita, Duality for modules and its applications to the theory of rings with minimum condition. Sci. Repts Tokyo Kyoiku Daigaku, A6:83–142 (May 15 1958).Google Scholar
  525. 526.
    M. Moriya, On the automorphisms of a certain class of finite rings. Kodai Math. Semin. Repts., 18(4):357–367 (1966).MathSciNetMATHCrossRefGoogle Scholar
  526. 527.
    A. Morris, On a generalized Clifford algebra. Quart. J. Math., 18(69):7–12 (1967).MATHCrossRefGoogle Scholar
  527. 528.
    I. Murase, On extended cyclic algebras. Scient. Papers Coll. Gen. Educ. Univ. Tokyo, 17(1):1–16 (1967).MathSciNetMATHGoogle Scholar
  528. 529.
    I. Murase, On the automorphisms of a quasi-matrix algebra. Scient. Papers Coll. Gen. Educ. Univ. Tokyo, 14(2):139–155 (1964).MathSciNetMATHGoogle Scholar
  529. 530.
    I. Murase, On the derivations of a quasi-matrix algebra. Scient. Papers Coll. Gen. Educ. Univ. Tokyo, 14(2):157–164 (1964).MathSciNetMATHGoogle Scholar
  530. 531.
    I. Murase, Generalized uniserial group rings. I. Scient. Papers Coll. Gen. Educ. Univ. Tokyo, 15 (1):15–28 (1965).MathSciNetMATHGoogle Scholar
  531. 532.
    I. Murase, Generalized uniserial group rings. II. Scient. Papers Coll. Gen. Educ. Univ. Tokyo, 15(2):111–128 (1965).MathSciNetMATHGoogle Scholar
  532. 533.
    I. Murase, On the structure of generalized uniserial rings. III. Scient Papers Coll. Gen. Educ. Univ. Tokyo, 14 (1):11–25 (1964).MathSciNetMATHGoogle Scholar
  533. 534.
    T. Nagahara, On Galois conditions and Galois groups of simple rings. Trans. Amer. Math. Soc., 116(4):417–434 (1965).MathSciNetMATHCrossRefGoogle Scholar
  534. 535.
    T. Nagahara, Quasi-Galois extensions of simple rings. Math. J. Okayama Univ., 12(2):107–146 (1966).MathSciNetGoogle Scholar
  535. 536.
    T. Nagahara, Supplements to the previous paper “Quasi-Galois extensions of simple rings”. Math. J. Okayama Univ., 12(2):159–196 (1966).MathSciNetGoogle Scholar
  536. 537.
    T. Nakano, A generalized valuation and its value groups. Comment. math. Univ. St. Pauli, 12 (1):1–22 (1964).MATHGoogle Scholar
  537. 538.
    T. Nakano, Rings and partly ordered systems. Math. Z., 99(5):335–376 (1967).CrossRefGoogle Scholar
  538. 539.
    N. S. Natarajan, Rings with generalized distributive laws. J. Indian Math. Soc., 28(1):1–6 (1964).MathSciNetMATHGoogle Scholar
  539. 540.
    M. Neumann and P. Dragomir, Asupra multiplilor intregi si rationali ai elemen-tului unitate intr-un inel respectiv intr-un corp. An. Univ.Timisoara.Ser.stiinte mat.-fiz 3:205–209 (1965).MathSciNetMATHGoogle Scholar
  540. 541.
    A. Nijenhuis and R. W. Richardson, Jr., Cohomology and deformations in graded Lie algebras. Bull. Amer. Math. Soc., 72(1, Part I):1–29 (1966).MathSciNetMATHCrossRefGoogle Scholar
  541. 542.
    A. Nijenhuis and R. W. Richardson, Jr., Deformations of homomorphisms of Lie groups and Lie algebras. Bull. Amer. Math. Soc., 73 (1):175–179 (1967).MathSciNetMATHCrossRefGoogle Scholar
  542. 543.
    A. Nijenhuis and R. W. Richardson, Jr., Deformations of Lie algebra structures. J. Math. and Mech., 17(1):89–105 (1967).MathSciNetMATHGoogle Scholar
  543. 544.
    G. M. L. Noronha and C. A. Almeida, Sur le demi-anneau des nombres naturels. An. Fac. cienc. Univ. Porto, 48(1–2):35–39 (1965).Google Scholar
  544. 545.
    T. Ochiai, Classification of the finite nonlinear primitive Lie algebras. Trans. Amer. Math. Soc., 124(2):313–322 (1966).MathSciNetMATHCrossRefGoogle Scholar
  545. 546.
    R. H. Oehmke, On a class of Lie algebras. Proc. Amer. Math. Soc., 16(5):1107–1113 (1965).MathSciNetMATHCrossRefGoogle Scholar
  546. 547.
    R. H. Oehmke and E. Sandier, The collineation groups of division ring planes. II. Jordan division rings. Pacif. J. Math., 15(1):259–265 (1965).MATHGoogle Scholar
  547. 548.
    A. Ofsti, On the structure of a certain class of locally compact rings. Math. scand., 18(2):134–142 (1966).MathSciNetMATHGoogle Scholar
  548. 549.
    M. Okuzumi, On Galois conditions in division algebras. Kodai Math. Semin. Repts., 18(1):16–23 (1966).MathSciNetMATHCrossRefGoogle Scholar
  549. 550.
    M. Okuzumi, The Cartan-Brauer-Hua theorem for algebras. Kodai Math. Semin. Repts., 18(2):193–194 (1966).MathSciNetMATHCrossRefGoogle Scholar
  550. 551.
    T. Onodera, A characterization of strongly separable algebras. J. Fac. Sci. Hokkaido Univ., 19(2):71–73 (1966).MathSciNetMATHGoogle Scholar
  551. 552.
    J. M. Osborn, Commutative algebras satisfying an identity of degree four. Proc. Amer. Math. Soc., 16(5):1114–1120 (1965).MathSciNetMATHCrossRefGoogle Scholar
  552. 553.
    J. M. Osborn, On commutative nonassociative algebras. J. Algebra, 2 (1):48–79 (1965).MathSciNetMATHCrossRefGoogle Scholar
  553. 554.
    J. M. Osborn, Jordan algebras of capacity two. Proc. Nat. Acad. Sci. U.S.A., 57(2):582–588 (1967).MathSciNetMATHCrossRefGoogle Scholar
  554. 555.
    B. L. Osofsky, A non-trivial ring with non-rational hull. Canad. Math. Bull., 10(2):275–282 (1967).MathSciNetMATHCrossRefGoogle Scholar
  555. 556.
    B. L. Osofsky, A generalization of quasi-Frobenius rings. J. Algebra, 4(3):373–387 (1966).MathSciNetMATHCrossRefGoogle Scholar
  556. 557.
    D. L. Outcalt, Power-associative algebras in which every subalgebra is an ideal. Pacif. J. Math., 20(3):481–485 (1967).MathSciNetMATHCrossRefGoogle Scholar
  557. 558.
    D. L. Outcalt, Simple n-associative rings. Pacif J. Math., 17(2):301–309 (1966).MathSciNetMATHCrossRefGoogle Scholar
  558. 559.
    D. L. Outcalt and A. Yaqub, A generalization of Wedderburn’s theorem. Proc. Amer. Math. Soc., 18(1):175–177 (1967).MathSciNetMATHGoogle Scholar
  559. 560.
    R. Ouzieou, Sur un propriété des anneaux artiniens. C. r. Acad. sci., 260(20): 5155–5156 (1965).Google Scholar
  560. 561.
    S. Page and R. W. Richardson, Jr., Stable subalgebras of Lie algebras and associative algebras. Trans. Amer. Math. Soc., 127(2):302–312 (1967).MathSciNetMATHCrossRefGoogle Scholar
  561. 562.
    D. J. Palmer, On the structure of nilpotent algebras. Doct. diss. Univ. Md., 26(11):6747–6748 (1966).Google Scholar
  562. 563.
    G. Panella, Osservazione riguardante gli anelli che verificano una condizione diGoogle Scholar
  563. 562.
    massimo. Atti Accad. naz. Lincei Rend. Cl. sci. fis. mat. e natur., 42(6):755–756 (1967).MathSciNetMATHGoogle Scholar
  564. 564.
    G. Panella, Un teorema di Golod-Šafarevič e alcune sue consequenze. Conf. semin. mat. Unov. Bari, No. 104 (1966), 17 pp.MathSciNetGoogle Scholar
  565. 565.
    J. Panvini, Su certi omomorfismi di tipo esponenziale. Rend. Semin. mat. Univ. Padova, 35(2):371–379 (1965).MathSciNetMATHGoogle Scholar
  566. 566.
    B. Pareigis, Einige Bemerkungen über Frobenius-Ezweiterungen. Math. Ann., 153(1):1–13 (1964).MathSciNetCrossRefGoogle Scholar
  567. 567.
    G. Pascual, “Estructura de D-anillo,“ Actas 5 Reun. anual. mat. esp. Valencia, 1964, Madrid (1967), pp. 225–227.Google Scholar
  568. 568.
    E. M. Patterson, The Wedderburn-Artin theorem for pseudo rings. Math. Z., 98(1):31–41 (1967).MathSciNetMATHCrossRefGoogle Scholar
  569. 569.
    E. M. Patterson, The Jacobson radical of a pseudo-ring. Math. Z., 89(4):348–364 (1965).MathSciNetMATHCrossRefGoogle Scholar
  570. 570.
    E. M. Patterson, Commutation problems involving rings of infinite matrices. Proc. Edinburgh Math. Soc., 14 (1):55–60 (1964).MathSciNetMATHCrossRefGoogle Scholar
  571. 571.
    K. R. Pearson, Interval semirings on R1 with ordinary multiplication. J. Austral. Math. Soc., 6(3):273–288 (1966).MathSciNetMATHCrossRefGoogle Scholar
  572. 572.
    R. E. Peinado, On finite rings. Math. Mag., 40(2):83–85 (1967).MathSciNetMATHCrossRefGoogle Scholar
  573. 573.
    R. E. Peinado, Una clasificación de anillos. Rev. Mat. hisp.-amer., 25(6):249–261 (1965).MathSciNetMATHGoogle Scholar
  574. 574.
    R. E. Peinado, Ancestral rings. Proc. Edinburgh Math. Soc., 15(2):107–109 (1966).MathSciNetMATHCrossRefGoogle Scholar
  575. 575.
    A. Peister, Quadratische Formen in beliebigen Körpen. Invent. math., 1(2):116–132 (1966).MathSciNetCrossRefGoogle Scholar
  576. 576.
    H. P. Petersson, Zur Theorie der Lie-Tripel-Algebren. Math. Z., 97(1):1–15 (1967).MathSciNetMATHCrossRefGoogle Scholar
  577. 577.
    H. P. Petersson, Über den Wedderburnschen Struktursatz für Lie-Tripel-Algebren. Math. Z., 98(2):104–118 (1967).MathSciNetMATHCrossRefGoogle Scholar
  578. 578.
    J.-C. Petit, Quasi-corps généralisant un type d’anneau quotient. C. r. Acad. sci., 265(22):A708–A711 (1967).MathSciNetGoogle Scholar
  579. 579.
    F. Pokropp, Dicksonsche Fastkörper. Abhandl Math. Semin. Univ. Hamburg, 30(3):188–219 (1967).MathSciNetMATHCrossRefGoogle Scholar
  580. 580.
    G. Pollak, Bemerkungen zur Holomorphentheorie der Ringe. Acta. scient. math., 25(3–4):181–185 (1964).MathSciNetMATHGoogle Scholar
  581. 581.
    I. Popovici and C. Ghéorghe, Algèbres de Clifford généralisées. C. r. Acad. sci., AB262(12):A682–A685 (1966).Google Scholar
  582. 582.
    F. Poyatos, Decomposiciones irreducibles en suma direeta interna de ciertas algebraicas. Rev. mat. hisp.-amer., 27(4):151–170 (1967).MathSciNetMATHGoogle Scholar
  583. 583.
    C. Procesi, Non-commutative affine rings. Atti Accad. naz. Lincei, Mem. Cl. sci. fis., mat. e natur., Sez. I, 8(6):239–255 (1967).MathSciNetMATHGoogle Scholar
  584. 584.
    C. Procesi, Non-commutative Jacobson-rings. An. Scuola norm, super. Pisa Sci. fis. e. mat., 21(2):281–290 (1967).MathSciNetMATHGoogle Scholar
  585. 585.
    C. Procesi, Su un teorema di Faith-Utumi. Rend. mat. e applic., 24(3–4):346, 347 (1965).MathSciNetMATHGoogle Scholar
  586. 586.
    C. Procesi, A non commutative Hilbert Nullstellensatz. Rend. math. e applic., 25(1–2):71–121 (1966).MathSciNetGoogle Scholar
  587. 587.
    J. Querre, Orders maximaux. Sémin. Dubreil et Pisot. Fac. Sci. Paris, 18(1): 4/01–4/21, 1964–1965 (1967).Google Scholar
  588. 588.
    C. Raggi and F. Francisco, Localizacion en anillos no commutativos. An. Inst. mat. Univ. nac. Autónoma México, 6:1–6 (1966).MATHGoogle Scholar
  589. 589.
    N. Ramabhadran, Coherent pairs of extensions of Lie algebras. (Thesis abstract.) Math. Student, 32(1–2):111 (1964).Google Scholar
  590. 590.
    R. von Randow, The involutory antiautomorphisms of the quaternion algebra. Amer. Math. Monthly, 74(6):699–700 (1967).MATHCrossRefGoogle Scholar
  591. 591.
    J. D. Reid, On subcommutative rings. Acta math. Acad. scient. hung., 16(1–2): 23–26 (1965).MATHCrossRefGoogle Scholar
  592. 592.
    I. Reiner, Completion of primitive matrices. Amer. Math. Monthly, 73(4):380 (1966).MathSciNetMATHCrossRefGoogle Scholar
  593. 593.
    C. Reischer and V. Tamas, “Asupra sirurilor recurente cu elemente dintr’o algebr liniar,” An. stiint. Univ. Iai, Sec. Ia, 11(2):249–258 (1965).Google Scholar
  594. 594.
    G. Renault, Étude des anneaux réduits et de leurs enveloppes injectives. C. r. Acad. sci., 264(2):A53–A55 (1967).MathSciNetGoogle Scholar
  595. 595.
    G. Renault, Anneaux self-injectifs. Sémin. Dubreil et Pisot. Fac. Sci. Paris, 19 (1):11/01–11/04 (1967).Google Scholar
  596. 596.
    G. Renault, Anneaux réduits non commutatifs. J. math. pures et appl., 46(2): 203–214 (1967).MathSciNetMATHGoogle Scholar
  597. 597.
    R. Rentschier, Eine Bemerkung, zu Ringen mit Minimalbedingung für Hauptideale. Arch. Math., 17(4):298–301 (1966).CrossRefGoogle Scholar
  598. 598.
    R. Rentschier and P. Gabriel, Sur la dimension des anneaux et ensembles ordonnés. C. r. Acad. sci., 265(22):A712–A715 (1967).Google Scholar
  599. 599.
    R. W. Richardson, Jr., On the rigidity of semi-direct products of Lie algebras. Pacif. J. Math., 22(2):339–344 (1967).MATHCrossRefGoogle Scholar
  600. 600.
    R. W. Richardson, Jr., A rigidity theorem for subalgebras of Lie and associative algebras. Ill. J. Math., 11(1):92–110 (1967).MATHGoogle Scholar
  601. 601.
    F. Richman, Generalized quotient rings. Proc. Amer. Math. Soc., 16(4):794–799 (1965).MathSciNetMATHCrossRefGoogle Scholar
  602. 602.
    M. A. Rieffel, Burnside’s theorem for representations of Hopf algebras. J. Algebra, 6(1):123–130 (1967).MathSciNetCrossRefGoogle Scholar
  603. 603.
    Ringe und Moduln, Tagungsbericht, 27 Feb.-5 märz, Math. Forschungsinst. Oberwolfach (1966), 14 pp.Google Scholar
  604. 604.
    D. W. Robinson, A note on additive commutators in a ring. Amer. Math. Monthly, 72(10):1106–1107 (1965).MathSciNetMATHCrossRefGoogle Scholar
  605. 605.
    J. C. Robson, Pri-rings and ipii-rings. Quart. J. Math., 18(70):125–145 (1967).MathSciNetMATHCrossRefGoogle Scholar
  606. 606.
    J. C. Robson, Do simple rings have unity elements? J. Algebra, 7(1):140–143 (1967).MathSciNetMATHCrossRefGoogle Scholar
  607. 607.
    D. J. Rodabaugh, Antiflexible algebras which are not power-associative. Proc. Amer. Math. Soc., 17(1):237–239 (1966).MathSciNetCrossRefGoogle Scholar
  608. 608.
    D. J. Rodabaugh, Some new results on simple algebras. Pacif. J. Math., 17(2): 311–317 (1966).MathSciNetMATHCrossRefGoogle Scholar
  609. 609.
    D. J. Rodabaugh, A generalization of the flexible law. Trans. Amer. Math. Soc., 114(2):486–487 (1965).MathSciNetGoogle Scholar
  610. 610.
    B. R. Rodrigquez-Salinas and J. Garay de Pable, “Sobre los cuerpos no commutativas . de rango cuatro respecto de su centro,” Actas 5 Reun. anual mat. esp. Valencia, 1964, Madrid (1967), pp. 137–152.Google Scholar
  611. 611.
    W. Romberg, Das Henselsche Lemma in potenzassoziativen Algebren. Math. Nachr., 29(5–6):375–380 (1965).MathSciNetMATHCrossRefGoogle Scholar
  612. 612.
    W. Romberg, Pseudobewertungen und Arithmetik in nichtassoziativen Algebren. I. Math. Nachr., 26(5):287–306 (1964).MathSciNetMATHCrossRefGoogle Scholar
  613. 613.
    G. Romier, Automorphismes et algèbre d’un schéma d’association. Caractérisation algébrique des correspondances partiellement équilibrees. C. r. Acad. sci., 258(22):5345–5348 (1968).MathSciNetGoogle Scholar
  614. 614.
    B. van Rootselaar, Zum ALE-Fasthalbringbegriff. Nieuw arch. wiskunde, 15(3): 247–249 (1967).MATHGoogle Scholar
  615. 615.
    A. Rosenfeld, A note on two special types of rings. Scripta Math., 28 (1):51–54 (1967).MathSciNetMATHGoogle Scholar
  616. 616.
    L. E. Ross, Representations of graded Lie algebras. Trans. Amer. Math. Soc., 120(1):17–23 (1965).MathSciNetMATHCrossRefGoogle Scholar
  617. 617.
    L. E. Ross, “On representations and cohomology of graded Lie algebras,” Doctoral dissertation, Univ. California, Berkeley (1964) 48 pp.; Dissert. Abstr., 25(10):5969 (1965).Google Scholar
  618. 618.
    J. Rouband, Sur un théorème de M. P. Schutzenberger. C. r. Acad. sci., 261(17): 3265–3267 (1965).Google Scholar
  619. 619.
    D. E. Rutherford, The Cayley-Hamilton theorem for semi-rings. Proc. Roy. Soc. Edinburgh, A66(4):211–215 (1965).Google Scholar
  620. 620.
    E. A. Rutter, Jr., A remark concerning quasi-Frobenius rings. Proc. Amer. Math. Soc., 16(6):1372–1373 (1965).MathSciNetMATHCrossRefGoogle Scholar
  621. 621.
    E. A. Rutter, Jr., “Characterizations of quasi-Frobenius rings,” Doctoral dissertation, Iowa State Univ. Sci. and Technol. (1965), 60 pp.Google Scholar
  622. 622.
    A. A. Sagle, On anti-commutative algebras and homogeneous spaces. J. Math. and Mech., 16(12):1381–1393 (1967).MathSciNetMATHGoogle Scholar
  623. 623.
    A. A. Sagle, Simple algebras that generalize the Jordan algebra M83. Canad. J. Math., 18(2):282–290 (1966).MathSciNetMATHCrossRefGoogle Scholar
  624. 624.
    A. A. Sagle, On simple extended Lie algebras over fields of characteristic zero. Pacif. J. Math., 15(2):621–648 (1965).MathSciNetMATHCrossRefGoogle Scholar
  625. 625.
    A. A. Sagle, Remarks on simple extended Lie algebras. Pacif. J. Math., 15(2): 613–620 (1965).MathSciNetMATHCrossRefGoogle Scholar
  626. 626.
    A. A. Sagle, On anti-commutative algebras and general Lie triple systems. Pacif. J. Math., 15 (1):281–291 (1965).MathSciNetMATHCrossRefGoogle Scholar
  627. 627.
    A. A. Sagle, On simple algebras obtained from homogeneous general Lie triple systems. Pacif. J. Math., 15(4):1397–1400 (1965).MathSciNetMATHCrossRefGoogle Scholar
  628. 628.
    P. Salmon, Suele algebre simmetriche e di Rees di un ideale. Genova, Ed., scientif., 1964, 27 pp.; Bibliogr. naz. ital., 7(7):428 (1964).Google Scholar
  629. 629.
    San Román, J. Sancho, Contributión al estudio de la valoraciones no triviales subordinadas de una valoración dada. Publs. semin. math. Fac. cienc. Zaragoza, No. 3, pp. 133–135 (1962).Google Scholar
  630. 630.
    F. L. Sandomierski, Nonsingular rings. Proc. Amer. Math. Soc. 19(1):225–230 (1968).MathSciNetMATHCrossRefGoogle Scholar
  631. 631.
    F. L. Sandomierski, Semisimple maximal quotient rings. Trans. Amer. Math. Soc. 128(1):112–120 (1967).MathSciNetMATHCrossRefGoogle Scholar
  632. 632.
    A. D. Sands, Primitive rings of infinite matrices. Proc. Edinburg. Math. Soc., 14(1):47–53 (1964).MathSciNetMATHCrossRefGoogle Scholar
  633. 633.
    E. Sasiada and P. M. Cohn, An example of a simple radical ring. J. Algebra, 5(3):373–377 (1967).MathSciNetMATHCrossRefGoogle Scholar
  634. 634.
    M. Satyanarayana, “Non-commutative local rings,” Doctoral dissertation, Univ. Wisconsin, Milwaukee (1966), 67 pp.; Dissert. Abstr., B28(3):1019 (1967).Google Scholar
  635. 635.
    M. Satyanarayana, Semisimple rings. Amer. Math. Monthly, 74(9):1086 (1967).MathSciNetMATHCrossRefGoogle Scholar
  636. 636.
    R. D. Schafer, On the simplicity of the Lie algebras E7 and E8. Proc. Koninkl. nederl. akad. wet., A69(1):64–69 (1966).MathSciNetGoogle Scholar
  637. 637.
    R. D. Schafer, An Introduction to Non-associative Algebras, Academic Press, New York (1966), Vol. 10, 166 pp.Google Scholar
  638. 638.
    J. H. Scheuneman, “Two-step nilpotent Lie algebras,” Doctoral dissertation, Purdue Univ. (1966) 60 pp.; Dissert. Abstr., B27:2449 (1967).Google Scholar
  639. 639.
    H. Schneider and J. Weissglass, Group rings, semigroup rings and their radicals. J. Algebra, 5(1):1–15 (1967).MathSciNetMATHCrossRefGoogle Scholar
  640. 640.
    J. R. Schue, Symmetry for the enveloping algebra of a restricted Lie algebra. Proc. Amer. Math. Soc., 16(5):1123–1124 (1965).MathSciNetMATHCrossRefGoogle Scholar
  641. 641.
    J. Seiden, A note on compact semirings. Proc. Amer. Math. Soc., 15(16):882–886 (1964)MathSciNetGoogle Scholar
  642. 642.
    G. B. Seligman, Some results on Liep-algebras. Bull. Amer. Math. Soc., 73(4): 528–530 (1967).MathSciNetMATHCrossRefGoogle Scholar
  643. 643.
    L. Silver, Noncommutative localizations and applications. J. Algebra, 7(1):44–76 (1967).MathSciNetMATHCrossRefGoogle Scholar
  644. 644.
    L. A. Skornjakov, Alternative rings. Rend. mat. e applic., 24(3–4):360–372 (1965).MathSciNetGoogle Scholar
  645. 645.
    M. Slater, Ideals in semiprime alternative rings. J. Algebra, 8 (1):60–76 (1967).MathSciNetCrossRefGoogle Scholar
  646. 646.
    M. Slater, Nucleus and center in alternative rings. J. Algebra, 7(3):372–388 (1967).MathSciNetMATHCrossRefGoogle Scholar
  647. 647.
    L. W. Small, On some questions in Noetherian rings. Bull. Amer. Math. Soc., 72(5):853–857 (1966).MathSciNetMATHCrossRefGoogle Scholar
  648. 648.
    L. W. Small, Orders in Artinian rings. J. Algebra, 4(1):13–41 (1966).MathSciNetMATHCrossRefGoogle Scholar
  649. 649.
    L. W. Small, Correction and addendum: “Orders in Artinian rings. J. Algebra, 4(3):505–507 (1966).MathSciNetCrossRefGoogle Scholar
  650. 650.
    L. W. Small, Semihereditary rings. Bull. Amer. Math. Soc., 73(5):656–658 (1967).MathSciNetMATHCrossRefGoogle Scholar
  651. 651.
    L. W. Small, An example in Noetherian rings. Proc. Nat. Acad. Sci., U. S. A., 54(4):1035–1036 (1965).MathSciNetMATHCrossRefGoogle Scholar
  652. 652.
    D. A. Smith, Chevalley bases for Lie modules. Trans. Amer. Math. Soc., 115(3):283–289 (1965).MathSciNetMATHCrossRefGoogle Scholar
  653. 653.
    F. A. Smith, A structure for a class of lattice ordered semirings. Fundam. Math., 59 (1):49–64 (1966).MATHGoogle Scholar
  654. 654.
    F. A. Smith and A. Engelbert, “A structure theory for a class of lattice ordered semirings,”12932, Doctoral dissertation, Purdue Univ., (1965) 46 pp.; Dissert. Abstr., 26(3):1675 (1965).Google Scholar
  655. 655.
    D. Soda, Some groups of type D4 defined by Jordan algebras. J. reine und angew. Math., 223:150–163 (1966).MathSciNetMATHGoogle Scholar
  656. 656.
    L. Solomon and V. Daya-Nand, Sur le corps des quotients de l’algèbre envelloppante d’une algèbre de Lie. C. r. Acad. sci., 264(23):A986 (1967).Google Scholar
  657. 657.
    G. Sorani, Radical subrings of matrix rings. Amer. Math. Monthly, 73(9):989–991 (1966).MathSciNetMATHCrossRefGoogle Scholar
  658. 658.
    J. Stallings, Whitehead torsion of free products. Ann. Math., 82(2):354–363 (1965).MathSciNetMATHCrossRefGoogle Scholar
  659. 659.
    L. Stammler, Elementare Beweise zweier Sätze über Matrizenringe. Publs. math., 12(1–4):33–38 (1965).MathSciNetMATHGoogle Scholar
  660. 660.
    A. Steger, Elementary factorization in -regular rings. Canad. J. Math., 18(2): 307–313 (1966).MathSciNetMATHCrossRefGoogle Scholar
  661. 661.
    J. von den Steinen, Über Ausdehnungen von Derivationen. Math. Z., 92(3):234–255 (1966).MathSciNetMATHCrossRefGoogle Scholar
  662. 662.
    O. Steinfeld and R. Wiegandt, Über die Verallgemeinerungen und Analoga der Wedderburn-Artinschen und Noetherschen Struktursätze. Math. Nachr., 34(3–4): 143–156 (1965).MathSciNetGoogle Scholar
  663. 663.
    N. J. Sterling, Prime associator-dependent rings with idempotent. Trans. Amer. Math. Soc., 128(3):474–481 (1967).MathSciNetMATHCrossRefGoogle Scholar
  664. 664.
    N. Straumann, Branching rules and Clebsch-Gordan series of semi-simple Lie algebras. Helv. phys. acta, 38(5):481–498 (1965).MathSciNetMATHGoogle Scholar
  665. 665.
    R. W. Stringall, Endomorphism rings of primary abelian groups. Pacif. J. Math., 20(3):535–557 (1967).MathSciNetMATHCrossRefGoogle Scholar
  666. 666.
    H. Subramanian, Ideal neighbourhoods in a ring. Pacif. J. Math., 24 (1):173–176 (1968).MATHCrossRefGoogle Scholar
  667. 667.
    H. Subramanian, l -prime ideals in ƒ-rings. Bull. Soc. math. France, 95(2): 193–203 (1967).MathSciNetMATHGoogle Scholar
  668. 668.
    A. Sulinski, R. Anderson, and N. Divinsky, Lower radical properties for associative and alternative rings. J. Lond. Math. Soc., 41(3):417–424 (1966).MathSciNetMATHCrossRefGoogle Scholar
  669. 669.
    F. Szász, Einige Kriterien für die Existenz des Einselements in einem ring. Acta scient. math., 28(1–2):31–37 (1967).MATHGoogle Scholar
  670. 670.
    F. Szász, Hinreichende Bedingung für die Existenz eines Rechtseinselementes in einem Ring. Publs. math., 14:151–152 (1967).MATHGoogle Scholar
  671. 671.
    F. Szász, The sharpening of a result concerning primitive ideals of an associative ring. Proc. Amer. Math. Soc., 18(5):910–912 (1967).MathSciNetMATHCrossRefGoogle Scholar
  672. 672.
    F. Szász, Gyrk maximális jobbideáljairól. Magyártud.akad. Mat. és fis. tud. oszt. közl., 17(4):473–476 (1967).MATHGoogle Scholar
  673. 673.
    J. Szendrei, Megjegyzések a gyr centrumáról, Szegedi tanárképz fisk. tud. közl., 1966. 2 rész., Szegel (1966), pp. 173–175.Google Scholar
  674. 674.
    H. Tachikawa, On dominant dimensions of QF-3 algebras. Trans. Amer. Math. Soc., 112(2):249–266 (1964).MathSciNetMATHGoogle Scholar
  675. 675.
    E. J. Taft, Invariant splitting in Jordan and alternative algebras. Pacif. J. Math., 15(4):1421–1427 (1965).MathSciNetMATHCrossRefGoogle Scholar
  676. 676.
    E. J. Taft, On certain d-groups of algebra automorphisms and antiautomorphisms. J. Algebra, 3 (1):115–121 (1966).MathSciNetMATHCrossRefGoogle Scholar
  677. 677.
    E. J. Taft, Cohomology of algebraic groups and invariant splitting of algebras. Bull. Amer. Math. Soc., 73(1):106–108 (1967).MathSciNetMATHCrossRefGoogle Scholar
  678. 678.
    S. Takahashi, A characterization of group rings as a special class of Hopf algebras. Canad. Math. Bull., 8(4):465–475 (1965).MathSciNetMATHCrossRefGoogle Scholar
  679. 679.
    Y. Takeuchi, On Galois extensions over commutative rings. Osaka J. Math., 2 (1):137–145 (1965).MathSciNetMATHGoogle Scholar
  680. 680.
    Y. Takeuchi, Infinite outer Galois theory of non-commutative rings. Osaka J. Math., 3(2):195–200 (1966).MathSciNetMATHGoogle Scholar
  681. 681.
    T. D. Talintyre, Quotient rings with minimum condition on right ideals. J. London Math. Soc., 41(1):141–144 (1966).MathSciNetMATHCrossRefGoogle Scholar
  682. 682.
    V. Tharmaratnam, Complete primitive distributively generated near-rings. Quart. J. Math., 18(72):293–313 (1967).MathSciNetMATHCrossRefGoogle Scholar
  683. 683.
    A. Thedy, Ringe mit x(yz) = (yx)z. Math. Z., 99(5):400–404 (1967).MathSciNetMATHCrossRefGoogle Scholar
  684. 684.
    G. Tjierrin, Anneaux metaprimitifs. Canad. J. Math., 17 (1):199–205 (1965).MathSciNetCrossRefGoogle Scholar
  685. 685.
    J. Tits, Algebres alternatives, algebres de Jordan et Algebres de Lie exceptionelles. I. Construction. Proc. Koninkl. nederl. acad. wet., A69(2):223–237 (1966).MathSciNetGoogle Scholar
  686. 686.
    S. Togo, Derivations of Lie algebras. Bull. Amer. Math. Soc., 72(4):690–692 (1966).MathSciNetMATHCrossRefGoogle Scholar
  687. 687.
    S. Togo, On some properties of t (n, ) and ƒt (n, ).J.Sci. Hiroshima Univ., Ser. A, Div. 1, 31 (1):35–38 (1967).MathSciNetMATHGoogle Scholar
  688. 688.
    S. Togo, Outer derivations of Lie algebras. Trans. Amer. Math. Soc., 1967, 128(2):264–276 (1968).MathSciNetCrossRefGoogle Scholar
  689. 689.
    S. Togo, Dimensions of the derivation algebras of Lie algebras. J. Sci. Hiroshima Univ., Ser. A, Div. 1, 31(1):17–23 (1967).MathSciNetMATHGoogle Scholar
  690. 690.
    S. Togo, Lie algebras which have few derivations. J. Sci. Hiroshima Univ., Ser. A, Div. 1, 29 (1):29–41 (1965).MathSciNetMATHGoogle Scholar
  691. 691.
    H. Tominaga, On Nagahara’s theorem. J. Fac Sci. Hokkaido Univ., Ser. 1, 18(3-4):153–157 (1965).MathSciNetGoogle Scholar
  692. 692.
    H. Tominaga, On q-Galois extensions of simple rings. Nagoya Math. J., 27(2): 485–507 (1966).MathSciNetMATHGoogle Scholar
  693. 693.
    H. Tominaga, On Galois extensions over a Field and abelian Galois groups. Math. J. Okayama Univ., 12(2):153–158 (1966).MathSciNetGoogle Scholar
  694. 694.
    B. R. Toskey, A system of canonical forms for rings on a direct sum of two infinite cyclic groups. Pacif. J. Math., 20(1):179–188 (1967).MathSciNetMATHCrossRefGoogle Scholar
  695. 695.
    C. E. Tsai, Flexible partially stable algebras. Trans. Amer. Math. Soc., 122(1): 48–63 (1966).MathSciNetMATHCrossRefGoogle Scholar
  696. 696.
    C. E. Tsai, Von Neumann regularity in Jordan algebras. Proc. Amer. Math. Soc., 18(4):726–728 (1967).MathSciNetMATHCrossRefGoogle Scholar
  697. 697.
    A. Tversky, A general theory of polynomial conjoint measurement. J. Math. Psychol., 4 (1):1–20 (1967).MathSciNetMATHCrossRefGoogle Scholar
  698. 698.
    Y. Utumi, On the continuity and self-injectivity of a complete regular ring. Canad. J. Math., 18(2):404–412 (1966).MathSciNetMATHCrossRefGoogle Scholar
  699. 699.
    Y. Utumi, On continuous rings and self-injective rings. Trans, Amer. Math. Soc., 118(6):158–173 (1965).MathSciNetMATHCrossRefGoogle Scholar
  700. 700.
    Y. Utumi, Self-injective rings. J. Algebra, 6 (1):56–64 (1967).MathSciNetMATHCrossRefGoogle Scholar
  701. 701.
    D. Vaida, Idéaux isoliés gaudies nilpotents et radical isolé. Bull. math. Soc. sci. math. et phys. RPR, 1962, 6(3-4):257–260 (1964).Google Scholar
  702. 702.
    W. V. Vasconcelos, On local and stable cancellation. An. Acad. brasil. ciênc., 37(3-4):389–393 (1965).MathSciNetMATHGoogle Scholar
  703. 703.
    M. Vergne, Réductibilité de la variété des algèbres de Lie nilpotentes. C. r. Acad. sci., 263 (1):A4–A6 (1966).MathSciNetGoogle Scholar
  704. 704.
    D.-N. Verma, “Structure of certain induced representations of complex semisimple Lie algebras,” Doctoral dissertation, Yale Univ. (1966), 107 pp.Google Scholar
  705. 705.
    O. E. Villamayor, La theorie de Galois pour les anneaux associatifs. Publs. Fac. cienc. fisicomat. Univ. nac. La Plata, No. 213, pp. 173–184 (1956).MathSciNetGoogle Scholar
  706. 706.
    O. E. Villamayor, Sur une representation matricielle de l’anneau d’endomorphismes d’un module quelconque. Publs. Fac. cienc. fisico mat. Univ. nac. La Plata, No. 213, pp. 185–190 (1956).MathSciNetGoogle Scholar
  707. 707.
    J. Vrabec, Delno urejene algebraine structure. Obz. mat. in fiz., 12(1):15–31 (1965).MathSciNetGoogle Scholar
  708. 708.
    G. Vranceanu, Asupra unei forme canonice a unei algebre comutative cudon elemente. Gaz. mat. (RPR), A70(6):201–203 (1965).MathSciNetGoogle Scholar
  709. 709.
    B. L. van der Waerden, On Clifford Algebras. Poc. Koninkl. nederl. akad. wet., A69(2):78–83 (1962)Google Scholar
  710. 710.
    W. von Waidenfels, Zur charakterizierung Liescher Elemente in freien Algebren. Arch. Math., 17(1):44–48 (1966).CrossRefGoogle Scholar
  711. 711.
    C. T. C. Wall, Graded Brauer groups. J. reine und angew. Math., 213(3-4):187–199 (1964).MATHGoogle Scholar
  712. 712.
    D. W. Wall, Basic algebras of algebras with unique minimal faithful representations. Duke Math. J., 32 (1):53–63 (1965).MathSciNetMATHCrossRefGoogle Scholar
  713. 713.
    D. W. Wall, Characterisations of generalized uniserial algebras. III. Proc. Edinburgh Math. Soc., 15 (1):37–42 (1966).MathSciNetMATHCrossRefGoogle Scholar
  714. 714.
    D. A. R. Wallace, On the commutativity of the radical of a group algebra. Proc. Glasgow Math. Assoc, 7 (1):1–8 (1965).MathSciNetMATHCrossRefGoogle Scholar
  715. 715.
    E. W. Wallace, A note on Levi’s theorem. Amer. Math. Monthly, 74(10):1238 (1967).MathSciNetMATHCrossRefGoogle Scholar
  716. 716.
    N. R. Wallach, “A classification of real simple Lie algebras,” Doctoral dissertation, Washington Univ. (1966), 41 pp.; Dissert. Abstr., B27(6):2049 (1966).Google Scholar
  717. 717.
    L. J. Wallen, On the magnitude of xn-1 in a normed algebra. Proc. Amer. Math. Soc., 18(5):956 (1967).MathSciNetMATHGoogle Scholar
  718. 718.
    A. P. J. van der Walt, Rings with dense quasi-centre. Math. Z., 97 (1):38–44 (1967).MathSciNetMATHCrossRefGoogle Scholar
  719. 719.
    A. P. J. van der Walt, OntheLevitzki nil radical. Arch. Math., 16(1): 22–24 (1965).MathSciNetMATHCrossRefGoogle Scholar
  720. 720.
    A. P. J. van der Walt, Prime ideals and nil radicals in near-rings. Arch. Math., 15(6):408–414 (1964).MathSciNetMATHCrossRefGoogle Scholar
  721. 721.
    S. Warner, Compactly generated algebras over discrete fields. Bull. Amer. Math. Soc., 73(2):227–230 (1967).MathSciNetMATHCrossRefGoogle Scholar
  722. 722.
    S. Warner, Locally compact simple rings having minimal left ideals. Trans. Amer. Math. Soc., 125(3):395–403 (1966).MathSciNetMATHCrossRefGoogle Scholar
  723. 723.
    Y. Watanabe, Simple algebras over a complete local ring. Osaka J. Math., 3(1): 13–20 (1966).MathSciNetMATHGoogle Scholar
  724. 724.
    E. C. Weinberg, On the scarcity of lattice-ordered matrix ring. Pacif. J. Math., 19(3):561–571 (1966).MathSciNetMATHCrossRefGoogle Scholar
  725. 725.
    H. J. Weinert, On the theory of pre-p-rings. Amer. Math. Monthly, 74(4):378–384 (1967).MathSciNetMATHCrossRefGoogle Scholar
  726. 726.
    H. J. Weinert, Ein Struktursatz für idempotente Halbkörper. Acta math. Acad. scient. hung., 15(3-4):289–295 (1964).MathSciNetMATHCrossRefGoogle Scholar
  727. 727.
    H. J. Weinert, Über Halbringe und Halbkörper. III. Acta math. Acad. scient hung., 15(1-2):177–194 (1964).MathSciNetMATHCrossRefGoogle Scholar
  728. 728.
    H. J. Weinert, Zur Theorie der Algebren und monomialen Ringe. Acta scient. math., 26(1-2):171–186 (1965).MathSciNetGoogle Scholar
  729. 729.
    H. J. Weinert, Eine Bemerkung zur Difinition halbgeordneter Mengen. Wiss. Z. Pädagog. Hochschule Potsdam. Math.-naturwiss. Reihe, 8(1–2):87–88 (1964).MathSciNetMATHGoogle Scholar
  730. 730.
    J. Weissglass,Group rings, semigroup rings and their radicals, Doctoral dissertation, Univ. Wisconsin (1967), 62 pp.; Dissert. Abstr., B28(3):1024 (1967).Google Scholar
  731. 731.
    R. H. Wenger,“Semigroups having quasi-Frobenius algebras,” Doctoral dissertation, Michigan State Univ. (1965), 70 pp.; Dissert. Abstr., 26(8):4703 (1966).Google Scholar
  732. 732.
    R. Wiegandt, Über transfinit nilpotente Ringe. Acta math. Acad. scient. hung., 17(1–2):101–114 (1966).MathSciNetMATHCrossRefGoogle Scholar
  733. 733.
    R. Wiegandt, Über halbeinfache linear Kompakte Ringe. Studia scient math. hung., (ex Akad. Mat. kutato int. közl.), 1(1–2):31–38 (1966).MathSciNetMATHGoogle Scholar
  734. 734.
    R. Wiegandt, Vizsgálatok a lineárisan kompakt gyrk elméletében. II. Magyar tud. akad. Math. és. fiz. tud. oszt. közl., 16(3):333–363 (1966).MathSciNetGoogle Scholar
  735. 735.
    R. Wiegandt, Über lokal linear kompakte Ringe. Acta scient. math., 28(3–4): 255–260 (1967).MathSciNetMATHGoogle Scholar
  736. 736.
    R. Wiegandt, Über linear kompakte reguläre Ringe. Bull. Acad. polon. sci. Sér. sci. math. astron. et phys., 13(7):445–446 (1965).MathSciNetMATHGoogle Scholar
  737. 737.
    P. Wilker, Doppeloops und Ternärkörper. Math. Ann., 159(3):172–196 (1965).MathSciNetMATHCrossRefGoogle Scholar
  738. 738.
    R. E. Williams, A note on near-rings over vector spaces. Amer. Math. Monthly, 74(2):173–175 (1967).MathSciNetMATHCrossRefGoogle Scholar
  739. 739.
    R. E. Williams, Simple near-rings and their associate rings. Doct. diss., Univ. Missouri (1965): 83 pp.; Dissert. Abstrs., 26(9):5470 (1966).Google Scholar
  740. 740.
    S. Williamson, Crossed products and ramification. Nagoya Math. J., 28:85–111 (1966).MathSciNetMATHGoogle Scholar
  741. 741.
    Ling-Erl Eileen Ting Wu, Bicontinuous isomorphisms between two closed left ideals of a compact dual ring. Canad. J. Math., 18(6):1148–1151 (1966).MathSciNetGoogle Scholar
  742. 742.
    Ling-Erl Eileen Ting Wu, H. Y. Mochizuki, and J. P. Jans, A characterization of QF-3 rings. Nagoya Math. J., 27(1):7–13 (1966).MathSciNetGoogle Scholar
  743. 743.
    Yong-hua Xu, L2-radical and L2-direct sum. Chinese Math., 8(4):538–549 (1966).Google Scholar
  744. 744.
    S. Yamamuro, Ideals and homomorphisms in some near-algebras. Proc. Japan. Acad., 42(5):427–432 (1966).MathSciNetMATHCrossRefGoogle Scholar
  745. 745.
    K. Yamazaki, On a duality between gratations and automorphisms of algebras. Scient. Papers Coll. Gen. Educ. Univ. Tokyo, 14(1):37–50 (1964).MATHGoogle Scholar
  746. 746.
    A. Zaks, Residue rings of semi-primary hereditary rings. Nagoya Math. J., 30:279–283 (1967).MathSciNetMATHGoogle Scholar
  747. 747.
    A. Zaks, A note on semi-primary hereditary rings. Pacif. J. Math., 23(3):627–628 (1967).MathSciNetMATHCrossRefGoogle Scholar
  748. 748.
    H. Zassenhaus, Orders as endomorphísms rings of modules of the same rank. J. London Math. Soc., 42(1):180–182 (1967).MathSciNetMATHCrossRefGoogle Scholar
  749. 749.
    H. Zassenhaus and W. Eichhorn, Herleitung von Acht-und Sechzehn-Quadrate-Identität mit Hilfe von Eigenschaften der verallgemeinerten Quaternionen und Cayley-Dicksonschen Zahlen. Arch. Math., 17(6):492–496 (1966).MathSciNetMATHCrossRefGoogle Scholar
  750. 750.
    J. L. Zemmer, Near-fields, planar and non-planar, Math. Student., 32(3–4): 145–150 (1964).MathSciNetMATHGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • L. A. Bokut’
  • K. A. Zhevlakov
  • E. N. Kuz’min

There are no affiliations available

Personalised recommendations