Advertisement

Thermodynamic Studies, by Mass Spectrometry, of Molten Mixed Halide Systems

  • John W. Hastie

Abstract

The solid and liquid states of mixed halide systems have received considerable continued attention over the past 50 years.(1) Thermodynamic and spectroscopic studies have indicated that many halides interact strongly on mixing to form new solid compounds(2) and very nonideal molten salt mixtures.(3) However, until more recently the vapor state of halide and mixed halide systems was believed to be ideal in that no chemical interaction occurred between the monomers. The expectation appeared to be that, at the elevated temperatures and low pressures used, the entropy contribution to free energy would be significant and would naturally favor the dissociation of complex or polymeric species.

Keywords

Molten Salt Thermodynamic Study Alkali Halide Vapor Pressure Measurement Knudsen Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.(a)
    M. Blander, ed., Molten Salt Chemistry, John Wiley (Interscience), New York (1964)Google Scholar
  2. (b).
    B. R. Sundheim, Fused Salts, McGraw-Hill, New York (1964)Google Scholar
  3. (c).
    J. Lumsden, Thermodynamics of Molten Salt Mixtures, Academic Press, New York (1967)Google Scholar
  4. (d).
    G. J. Janz, Molten Salts Handbook, Academic Press, New York (1967).Google Scholar
  5. 2.
    M. K. Reser, ed., Phase Diagrams for Ceramists, Suppl., American Ceramic Society, Columbus, Ohio (1969).Google Scholar
  6. 3.
    G. Mamantov, ed., Molten Salts Characterization and Analysis, Marcel Dekker, New York (1969).Google Scholar
  7. 4.
    N. I. Ionov, Dokl. Akad. Nauk SSSR 59: 467 (1948).Google Scholar
  8. 5.
    W. A. Chupka and M. G. Inghram, J. Phys. Chem. 59: 100 (1955).CrossRefGoogle Scholar
  9. 6.
    J. R. Hightower, Jr., and L. E. McNeese, Nucl. Sci. Abstr. 22: 1044 (1968).Google Scholar
  10. 7.
    T. S. Zvarova and I. Svara, Rare-Earth Separation by Gas Chromatography of Chlorides, unpublished data, USSR (1969).Google Scholar
  11. 8.
    H. Bloom and J. W. Hastie, J. Chem. Phys. 49: 2230 (1968).CrossRefGoogle Scholar
  12. 9.
    S. H. Bauer and R. F. Porter, in: Molten Salt Chemistry ( M. Blander, ed.), p. 607, John Wiley (Interscience), New York (1964).Google Scholar
  13. 10.
    G. I. Novikov and F. G. Gavryuchenkov, Russ. Chem. Rev. 36: 156 (1967).CrossRefGoogle Scholar
  14. 11.
    J. Drowart and P. Goldfinger, Angew. Chem. Int. Ed. 6: 581 (1967).CrossRefGoogle Scholar
  15. 12.
    R. T. Grimley, in: The Characterization of High Temperature Vapors (J. L. Margrave, ed.), J. Wiley, New York (1967).Google Scholar
  16. 13.
    R. C. Svedberg, in: Modern Aspects of Mass Spectrometry ( R. I. Reed, ed.), p. 169, Plenum Press, New York (1968).Google Scholar
  17. 14.
    R. T. Grimley and T. E. Joyce, J. Phys. Chem. 73: 3047 (1969).CrossRefGoogle Scholar
  18. 15.
    P. A. Akishin, L. N. Gorokhov, and L. N. Sidorov, Russ. J. Phys. Chem. 33: 648 (1959).Google Scholar
  19. 16.
    J. W. Hastie, R. H. Hauge, and J. L. Margrave, J. Chem. Phys. 51: 2648 (1969).CrossRefGoogle Scholar
  20. 17.
    J. L. Margrave, ed., The Characterization of High Temperature Vapors, John Wiley, New York (1967).Google Scholar
  21. 18.
    L. N. Sidorov and P. A. Akishin, Dokl. Akad. Nauk SSSR 151: 136 (1963).Google Scholar
  22. 19.
    T. A. Milne and H. M. Klein, J. Chem. Phys. 33: 1628 (1960).CrossRefGoogle Scholar
  23. 20.
    R. F. Porter and R. C. Schoonmaker, J. Chem. Phys. 29: 1070 (1958).CrossRefGoogle Scholar
  24. 21.
    R. F. Porter and R. C. Schoonmaker, J. Phys. Chem. 62: 486 (1958).CrossRefGoogle Scholar
  25. 22.
    R. C. Schoonmaker and R. F. Porter, J. Chem. Phys. 30: 283 (1959).CrossRefGoogle Scholar
  26. 23.
    M. Blander, J. Chem. Phys. 41: 170 (1964).CrossRefGoogle Scholar
  27. 24.
    J. Guion, D. Hengstenberg, and M. Blander, J. Phys. Chem. 72: 4620 (1968).CrossRefGoogle Scholar
  28. 25.
    A. V. Tarasov, A. B. Pospelov, and G. I. Novikov, Vestn. Leningrad. Univ. 21, Ser. Fiz. Khim. No. 2, 97 (1966); also C.A. 65: 11417h (1966).Google Scholar
  29. 26.
    S. H. Bauer, R. M. Diner, and R. F. Porter, J. Chem. Phys. 29: 991 (1958).CrossRefGoogle Scholar
  30. 27.
    A. Buchler and J. L. Stauffer, in: Thermodynamics, Vol. I, p. 271, International Atomic Energy Agency, Vienna (1966).Google Scholar
  31. 28.
    J. Berkowitz and W. A. Chupka, Ann. N. Y. Acad. Sci. 79: 1073 (1960).CrossRefGoogle Scholar
  32. 29.
    G. I. Novikov and A. L. Kuzmenko, Vestn. Leningrad Univ. 19(16), Ser. Fiz. Khim. No. 3, 165 (1964); also C. A. 62: 1317b (1965).Google Scholar
  33. 30.
    R. C. Schoonmaker, doctoral dissertation, Cornell University, Ithaca (1960).Google Scholar
  34. 31.
    L. N. Sidorov, V. I. Belousov, and P. A. Akishin, Russ. J. Phys. Chem. 43: 39 (1969).Google Scholar
  35. 32.
    K. A. Sense, R. W. Stone, and R. B. Filbert, Jr., U. S. At. Energy Commi. Rese. Rep., BNI-1186 (1957).Google Scholar
  36. 33.
    E. E. Schrier and H. M. Clark, J. Phys. Chem. 67: 1259 (1963).CrossRefGoogle Scholar
  37. 34.
    H. J. Moss, Diss. Abstr. 21: 3283 (1961).Google Scholar
  38. 35.
    H. Bloom and J. W. Hastie, Aust. J. Chem. 19: 1003 (1966);CrossRefGoogle Scholar
  39. J. W. Hastie, doctoral dissertation, University of Tasmania (1966).Google Scholar
  40. 36.
    D. W. Rice and N. W. Gregory, J. Phys. Chem. 72: 4524 (1968).CrossRefGoogle Scholar
  41. 37.
    A. Snelson, Optical Spectra of Some Low-Molecular Weight Compounds Using the Matrix Isolation Technique, Rep. IITRI-U6001–13, U. S. Army Research Office (1966).Google Scholar
  42. 38.
    R. F. Porter and E. E. Zeller, J. Chem. Phys. 33: 858 (1960).CrossRefGoogle Scholar
  43. 39.
    L. N. Sidorov and E. N. Kolosov, Russ. J. Phys. Chem. 42: 1382 (1968).Google Scholar
  44. 40.
    E. H. Howard, J. Amer. Chem. Soc. 76: 2041 (1955).Google Scholar
  45. 41.
    E. W. Dewing, J. Amer. Chem. Soc. 77: 2639 (1955).CrossRefGoogle Scholar
  46. 42.
    V. P. Spiridonov and E. V. Erokhin, Dokl. Akad. Nauk SSSR 180: 161 (1968).Google Scholar
  47. 43.
    L. D. McCory, R. C. Paule, and J. L. Margrave, J. Phys. Chem. 67: 1086 (1963).CrossRefGoogle Scholar
  48. 44.
    P. A. Akishin, N. G. Rambidi, and E. Z. Zasorin, Kristallografiya 4: 186 (1959).Google Scholar
  49. 45.
    J. W. Hastie, K. F. Zmbov, and J. L. Margrave, J. Inorg. Nucl. Chem. 30: 729 (1968).CrossRefGoogle Scholar
  50. 46.
    N. V. Karpenko, Russ. J. Inorg. Chem. 12: 1556 (1967).Google Scholar
  51. 47.
    H. Bloom and J. W. Hastie, J. Phys. Chem. 72: 2706 (1967).CrossRefGoogle Scholar
  52. 48.
    H. Bloom and J. W. Hastie, Aust. J. Chem. 21: 583 (1968).CrossRefGoogle Scholar
  53. 49.
    N. V. Karpenko and T. N. Sevast’yanova, Vestn. Leningrad. Univ., Fiz. Khim. 22: 109 (1967).Google Scholar
  54. 50.
    H. Bloom and J. W. Hastie, J. Phys. Chem. 72: 2361 (1968).CrossRefGoogle Scholar
  55. 51.
    S.-Wu P. and T.-L. Chen, K’o Hsueh T’ung Pao 3:268 (1965); C. A. 64: 4290h (1966).Google Scholar
  56. 52.
    P. Kusch, J. Chem. Phys. 22: 1203 (1954).CrossRefGoogle Scholar
  57. 53.
    R. R. Richards and N. W. Gregory, J. Phys. Chem. 68: 3089 (1964).CrossRefGoogle Scholar
  58. 54.
    L. N. Sidorov, Yu. M. Korenev, V. B. Sholts, P. A. Akishin, and V. P. Frolov, Russ. J. Phys. Chem. 41: 371 (1967).Google Scholar
  59. 55.
    L. N. Sidorov, P. A. Akishin, V. I. Belousov, and V. V. Sholts, Russ. J. Phys. Chem. 38: 641 (1964).Google Scholar
  60. 56.
    F. G. Gavryuchenkov and G. I. Novikov, Zh. Neorg. Khim. 4:1515 (1966); C. A. 65: 12906h (1966).Google Scholar
  61. 57.
    G. A. Semenov and F. G. Gavryuchenkov, Russ. J. Inorg. Chem. 9: 123 (1964).Google Scholar
  62. 58.
    G. I. Novikov and A. K. Baev, Vestn. Leningr. Gos. Univ., Pt. 3(16): 3, 89 (1962).Google Scholar
  63. 59.
    F. G. Gavryuchenkov and G. I. Novikov, Vestn. Leningrad Univ. 21(4), Ser. Fiz. Khim. 1:106 (1966); C. A. 65: 86b (1966).Google Scholar
  64. 60.
    J. W. Hastie, P. J. Ficalora, and J. L. Margrave, J. Less Common Metals 14: 83 (1968).CrossRefGoogle Scholar
  65. 61.
    J. W. Hastie and J. L. Margrave, High Temp. Sci. 1: 1737 (1969).Google Scholar
  66. 62.
    R. C. Schoonmaker, A. H. Friedman, and R. F. Porter, J. Chem. Phys. 31: 1586 (1959).CrossRefGoogle Scholar
  67. 63.
    H. M. Rosenstock, J. R. Sites, J. R. Walton, and R. Baldock, J. Chem. Phys. 23: 2442 (1955).CrossRefGoogle Scholar
  68. 64.
    A. Büchler, P. E. Blackburn, and J. L. Stauffer, J. Phys. Chem. 70: 685 (1966).CrossRefGoogle Scholar
  69. 65.
    A. H. Conley and S. T. Cohen, Inorg. Chem. 4: 1221 (1965).CrossRefGoogle Scholar
  70. 66.
    R. F. Porter, D. R. Bidinosti, and K. F. Walkerson, J. Chem. Phys. 36: 2104 (1962).CrossRefGoogle Scholar
  71. 67.
    A. G. Massey and D. S. Urch, Proc. Chem. Soc. London 284 (1964).Google Scholar
  72. 68.
    D. W. Tarasenkov and L. L. Klyachko-Gurvich, J. Gen. Chem. USSR 6:305 (1936); C. A. 30: 7427.Google Scholar
  73. 69.
    G. I. Novikov, A. K. Baev, and O. G. Polyachenok, Khim. Redk. Elem. Leningrad Gos. Univ. 63 (1964).Google Scholar
  74. 70.
    H. A. Oye and D. M. Gruen, J. Amer. Chem. Soc. 91: 2229 (1969).CrossRefGoogle Scholar
  75. 71.
    A. Snelson, J. Phys. Chem. 73: 1919 (1969).CrossRefGoogle Scholar
  76. 72.
    J. W. Hastie, R. H. Hauge, and J. L. Margrave, in: Spectroscopy in Inorganic Chemistry ( J. Ferraro and N. Rao, eds.), Academic Press, New York (1970).Google Scholar
  77. 73.
    V. A. Maroni and E. J. Cairns, in: Molten Salts Characterization and Analysis ( G. Mamantov, ed.), p. 231, Marcel Dekker, New York (1969).Google Scholar
  78. 74.
    K. F. Zmbov, P. Ficalora, and J. L. Margrave, J. Inorg. Nucl. Chem. 30: 2059 (1968).CrossRefGoogle Scholar
  79. 75.
    K. F. Zmbov, O. M. Uy, and J. L. Margrave, J. Phys. Chem. 73: 3008 (1969).CrossRefGoogle Scholar
  80. 76.
    D. R. Stull, ed., JANAF Thermochemical Tables, (No. PB-168–370, Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia (August 1965).Google Scholar
  81. 77.
    V. I. Belousov, L. N. Sidorov, S. A. Komarov, and P. A. Akishin, Russ, J. Phys. Chem. 41: 1598 (1967).Google Scholar
  82. 78.
    R. F. Krause, Jr., and T. B. Douglas, J. Phys. Chem. 72: 475 (1968).CrossRefGoogle Scholar
  83. 79.
    J. Berkowitz and J. R. Marquart, J. Chem. Phys. 37: 1853 (1962).CrossRefGoogle Scholar
  84. 80.
    N. V. Karpenko and G. I. Novikov, Vestn. Leningrad. Univ. 22, Fiz. Khim. No. 1, 72 (1967).Google Scholar
  85. 81.
    N. V. Karpenko, Zh. Neorg. Khim. 12: 3248 (1967).Google Scholar
  86. 82.
    F. J. Keneshea and D. Cubicciotti, J. Chem. Phys. 40: 191 (1964).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • John W. Hastie
    • 1
  1. 1.National Bureau of StandardsUSA

Personalised recommendations