Advertisement

Molten Salt Chemistry of the Haloaluminates

  • C. R. Boston

Abstract

This review covers the molten salt chemistry of the aluminum halides and their mixtures with other metal halides. These materials have extremely interesting properties from the molten salt point of view. They are almost unique in their wide range of acid-base properties. In addition, they form low melting liquids with good thermal stabilities. These facts together with recent studies showing the existence of unusual dissolved species suggest a vast potential for the haloaluminates as molten salt solvents.

Keywords

Molten Salt Aluminum Chloride Nuclear Quadrupole Resonance Aluminum Metal Decomposition Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. Gall, in: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. Vol. 9, pp. 529–48, John Wiley (Interscience), New York (1966).Google Scholar
  2. 2.
    P. A. Casabella and N. C. Miller, J. Chem. Phys. 40: 1363–1368 (1964).CrossRefGoogle Scholar
  3. 3.
    R. G. Barnes and S. L. Segel, J. Chem. Phys. 25: 180 (1956).CrossRefGoogle Scholar
  4. 4.
    P. A. Casabella, P. J. Bray, and R. G. Barnes, J. Chem. Phys. 30: 1393–1396 (1959).CrossRefGoogle Scholar
  5. 5.
    S. L. Segel and R. G. Barnes, J. Chem. Phys. 25: 578–579 (1956).CrossRefGoogle Scholar
  6. 6.
    C. R. Boston, S. J. Yosim, and L. F. Grantham, J. Chem. Phys. 51: 1669–1671 (1969).CrossRefGoogle Scholar
  7. 7.
    D. R. Stull, ed., JANAF Thermochemical Tables, Dow Chemical Co., Midland, Michigan (1965).Google Scholar
  8. 8.
    L. A. Nisel’son and T. D. Sokolova, Zh. Neorg. Khim. 10: 1516–19 (1965).Google Scholar
  9. 9.
    A. Smits and J. L. Meijering, Z. Phys. Chem. B41: 98–111 (1938).Google Scholar
  10. 10.
    J. W. Johnson, W. J. Silva, and D. Cubicciotti, J. Phys. Chem. 72: 1669–1672 (1968).CrossRefGoogle Scholar
  11. 11.
    E. Moles and A. Vian, An. Soc. Espan. Fis. Quim. 34: 782–786 (1936).Google Scholar
  12. 12.
    K. J. Palmer and N. Elliott, J. Amer. Chem. Soc. 60: 1852–1857 (1938).CrossRefGoogle Scholar
  13. 13.
    R. L. Harris, R. E. Wood, and H. L. Ritter, J. Amer. Chem. Soc. 73: 3151–3155 (1951).CrossRefGoogle Scholar
  14. 14.
    K. N. Semenenko and T. N. Naumova, Zh. Neorg. Khim. 9: 1316–1322 (1964).Google Scholar
  15. 15.
    W. Biltz and A. Voigt, Z. Anorg. Allg. Chem. 126: 39–53 (1923).CrossRefGoogle Scholar
  16. 16.
    H. Schinke and F. Sauerwald, Z. Anorg. Allg. Chem. 287: 313–324 (1956).CrossRefGoogle Scholar
  17. 17.
    B. F. Markov and A. F. Polishchuk, Ukr. Khim. Zh. 31: 1065–1071 (1965).Google Scholar
  18. 18.
    K. Sasvari, Acta Phys. Acad. Sci. Hung. 9: 195–202 (1958).CrossRefGoogle Scholar
  19. 19.
    J. A. A. Ketelaar, C. H. MacGillavry, and P. A. Renes, Rec. Tray. Chim. 66: 501–512 (1947).CrossRefGoogle Scholar
  20. 20.
    F. Hanic, K. Matiasovsky, D. Stempelova, and M. Malinovsky, Acta Chim. Acad. Sci. Hung. 32: 309–313 (1962).Google Scholar
  21. 21.
    P. A. Renes and C. H. MacGillavry, Rec. Tray. Chim. 64: 275–283 (1945).CrossRefGoogle Scholar
  22. 22.
    P. A. Akishin, N. G. Rambidi, and E. Z. Zasorin, Kristallografiya 4: 186–193 (1959).Google Scholar
  23. 23.
    V. O. Izbekov and N. G. Chovnik, Mem. Inst. Chem. Ukr. Acad. Sci. 4: 71–83 (1937).Google Scholar
  24. 24.
    W. Isbekow, Z. Phys. Chem. 116: 304–312 (1925).Google Scholar
  25. 25.
    Yu. K. Delimarskii and A. A. Kolotti, Zh. Fiz. Khim. 23: 90–96 (1949).Google Scholar
  26. 26.
    V. Izbekov and O. Nizhnik, J. Gen. Chem. USSR 7: 1268–1279 (1936).Google Scholar
  27. 27.
    H. A. f ye and D. M. Gruen, Inorg. Chem. 3: 836–841 (1964).CrossRefGoogle Scholar
  28. 28.
    H. H. Emons and H. Hasselbarth, Chem. Tech. (Berlin) 14: 621–624 (1962).Google Scholar
  29. 29.
    R. F. Barrow, I. Kopp, and R. Scullman, Proc. Phys. Soc. 82: 635–636 (1963).CrossRefGoogle Scholar
  30. 30.
    D. Sharma, Astrophys. J. 113: 210–218 (1951).CrossRefGoogle Scholar
  31. 31.
    M. Heise and K. Wieland, Hely. Chim. Acta 34: 2182–2197 (1951).CrossRefGoogle Scholar
  32. 32.
    E. Miescher, Hely. Phys. Acta 9: 693–706 (1936).Google Scholar
  33. 33.
    D. Maeder, Hely. Phys. Acta 16: 503–528 (1943).Google Scholar
  34. 34.
    D. Sharma, Astrophys. J. 113: 219–221 (1951).CrossRefGoogle Scholar
  35. 35.
    D. R. Lide, Jr., J. Chem. Phys. 42: 1013–1018 (1965).CrossRefGoogle Scholar
  36. 36.
    B. J. Chai, H. C. Ko, M. A. Greenbaum, and M. Farber, J. Phys. Chem. 71: 3331–3336 (1967).CrossRefGoogle Scholar
  37. 37.
    A. I. Belyaev, Izv. Akad. Nauk SSSR Met. Gorn. Delo (4): 22–31 (1963).Google Scholar
  38. 38.
    H. C. Ko, M. A. Greenbaum, J. A. Blauer, and M. Farber, J. Phys. Chem. 69: 23112316 (1967).Google Scholar
  39. 39.
    V. Pozsgai and E. Balazs, Kohasz. Lapok 99: 227–233 (1966).Google Scholar
  40. 40.
    E. Balazs and V. Pozsgai, Femip. Kut. Intez. Kozlem. 7: 275–288 (1964).Google Scholar
  41. 41.
    R. Heimgartner, Schweiz. Arch. Angew. Wiss. Tech. 18: 241–255 (1952).Google Scholar
  42. 42.
    P. Weiss, Z. Erzbergbau Metallhuettenw. 3: 241–244 (1950).Google Scholar
  43. 43.
    A. S. Russell, K. E. Martin, and C. N. Cochran, J. Amer. Chem. Soc. 73: 1466–1469 (1951).CrossRefGoogle Scholar
  44. 44.
    T. Kikuchi, T. Kurosawa, and T. Yagihashi, Trans. Jap. Inst. Metals 5: 122–127 (1964).Google Scholar
  45. 45.
    M. A. Frisch, M. A. Greenbaum, and M. Farber, J. Phys. Chem. 69: 3001–3005 (1965).CrossRefGoogle Scholar
  46. 46.
    D. B. Rao and V. V. Dadape, J. Phys. Chem. 70: 1349–1353 (1966).CrossRefGoogle Scholar
  47. 47.
    H. Mitani and H. Nagai, Nippon Kinzoku Gakkaishi 31: 1296–1300 (1967).Google Scholar
  48. 48.
    W. Klemm, K. Geiersberger, B. Schaeler, and H. Mindt, Z. Anorg. Chem. 225: 287293 (1948).Google Scholar
  49. 49.
    W. Hirschwald and O. Kacke, Z. Erzbergbau Metallhuettenw. 11: 99–104 (1958).Google Scholar
  50. 50.
    S. A. Semenkovich, Zh. Prikl. Khim. 33: 552–559 (1960).Google Scholar
  51. 51.
    J. Thonstad, Can. J. Chem. 42: 2739–2743 (1964).CrossRefGoogle Scholar
  52. 52.
    J. D. Corbett and S. von Winbush, J. Amer. Chem. Soc. 77: 3964–3966 (1955).CrossRefGoogle Scholar
  53. 53.
    W. C. Schumb and H. H. Rogers, J. Amer. Chem. Soc. 73: 5860–5868 (1951).CrossRefGoogle Scholar
  54. 54.
    R. Midorikawa, Denki Kagaku 25: 13–16 (1957).Google Scholar
  55. 55.
    T. Notoya, Electrochim. Acta 13: 2194–2195 (1968).CrossRefGoogle Scholar
  56. 56.
    A. I. Belyaev, Sb. Nauch. Tr. Mosk. Inst. Tsvet. Metal. Zolota (31): 46–63 (1958).Google Scholar
  57. 57.
    C. R. Boston, J. Chem. Eng. Data 11: 262–263 (1966).CrossRefGoogle Scholar
  58. 58.
    J. R. Morrey and D. G. Carter, J. Chem. Eng. Data 13: 94 (1968).CrossRefGoogle Scholar
  59. 59.
    I. I. Naryshkin, J. Phys. Chem. USSR 13: 690–692 (1939).Google Scholar
  60. 60.
    H. Grothe, Z. Elektrochem. 54: 216–219 (1950).Google Scholar
  61. 61.
    E. W. Dewing, J. Amer. Chem. Soc. 77: 2639–2641 (1955).CrossRefGoogle Scholar
  62. 62.
    T. Narita, T. Ishikawa, and R. Midorikawa, Denki Kagaku 36: 300–305 (1968).Google Scholar
  63. 63.
    R. H. Moore, J. R. Morrey, and E. E. Voiland, J. Phys. Chem. 67: 744 (1963).CrossRefGoogle Scholar
  64. 64.
    M. M. Vetyukov and G. I. Sipriva, Zh. Prikl. Khim. 36: 1905–1909 (1963).Google Scholar
  65. 65.
    J. D. Edwards, C. S. Taylor, L. A. Cosgrove, and A. S. Russell, J. Electrochem. Soc. 100: 508 (1953).CrossRefGoogle Scholar
  66. 66.
    W. B. Frank and L. M. Foster, J. Phys. Chem. 64: 95–98 (1960).CrossRefGoogle Scholar
  67. 67.
    Y. Yamaguti and S. Sisido, J. Chem. Soc. Jap. 62: 304–307 (1941).Google Scholar
  68. 68.
    A. I. Kryagova, J. Gen. Chem. USSR 9: 1755–1758 (1939).Google Scholar
  69. 69.
    R. Midorikawa, J. Electrochem. Soc. Jap. 23: 310 (1954).Google Scholar
  70. 70.
    R. Midorikawa, J. Electrochem. Soc. Jap. 23: 352–355 (1955).Google Scholar
  71. 71.
    H. Grothe, Z. Elektrochem. 53: 362–369 (1949).Google Scholar
  72. 72.
    C. R. Boston, J. Chem. Eng. Data 13: 117 (1968).CrossRefGoogle Scholar
  73. 73.
    Ya. A. Fialkov and O. I. Shor, J. Gen. Chem. USSR 19: a235 - a249 (1949).Google Scholar
  74. 74.
    E. Ya. Gorenbein and E. E. Kriss, J. Gen. Chem. USSR 19: 1978–1986 (1949).Google Scholar
  75. 75.
    E. Ya. Gorenbein, Zh. Obshch. Khim. 18: 1427–1439 (1948).Google Scholar
  76. 76.
    E. Ya. Gorenbein, J. Gen. Chem. USSR 15: 729–744 (1945).Google Scholar
  77. 77.
    E. Ya. Gorenbein, J. Gen. Chem. USSR 17: 873–886 (1947).Google Scholar
  78. 78.
    E. Ya. Gorenbein and E. E. Kriss, J. Phys. Chem. USSR 25: 791–797 (1951).Google Scholar
  79. 79.
    Ya. A. Fialkov, Zap. Inst. Khim., Akad. Nauk SSSR. 6: 235–260 (1940).Google Scholar
  80. 80.
    Ya. A. Fialkov and N. I. Gol’dman, J. Gen. Chem. USSR 11: 910–924 (1941).Google Scholar
  81. 81.
    B. A. Isbekov and V. A. Plotnikov, Z. Anorg. Chem. 71: 328–346 (1911).CrossRefGoogle Scholar
  82. 82.
    A. I. Kryagova, J. Gen. Chem. USSR 9: 1759–1763 (1939).Google Scholar
  83. 83.
    E. Ya. Gorenbein, J. Phys. Chem. USSR 25: 1160 (1951).Google Scholar
  84. 84.
    N. A. Trifonov, Akad. Nauk SSSR Otd. Tekh. Nauk, Inst. Mashinoved. Soveshch. Vyazkosti Zhidk. Kolloid. Rastvorov 2: 76–84 (1944).Google Scholar
  85. 85.
    B. G. Korshunov, N. I. Kaloev, L. A. Nisel’son, and O. R. Garvilov, Zh. Neorg. Khim. 13: 1956–1961 (1968).Google Scholar
  86. 86.
    I. S. Morozov and L. Tsegledi, Zh. Neorg. Khim. 6: 2766–2775 (1961).Google Scholar
  87. 87.
    I. S. Morozov and D. Y. Toptygin, Bull. Acad. Sci. USSR Div. Chem. Sci. 18: 321839 (1959).Google Scholar
  88. 88.
    V. I. Mikheeva, S. M. Arkhipov, and T. V. Revzina, Zh. Neorg. Khim. 13: 19461949 (1968).Google Scholar
  89. 89.
    A. I. Kryagova, J. Gen. Chem. USSR 17: 23–26 (1947).Google Scholar
  90. 90.
    A. I. Kryagova, J. Gen. Chem. USSR 17: 421–424 (1947).Google Scholar
  91. 91.
    A. I. Kryagova, Zh. Prikl. Khim. 21: 561–572 (1948).Google Scholar
  92. 92.
    J. Kendall, E. D. Crittenden, and H. K. Miller, J. Amer. Chem. Soc. 45: 963–996 (1923).CrossRefGoogle Scholar
  93. 93.
    W. Fischer and A. Simon, Z. Anorg. Allg. Chem. 306: 1–12 (1960).CrossRefGoogle Scholar
  94. 94.
    R. Midorikawa, J. Electrochem. Soc. Jap. 23: 72–76 (1955).Google Scholar
  95. 95.
    U. I. Shvartsman, J. Phys. Chem. USSR 14: 253–256 (1940).Google Scholar
  96. 96.
    A. Chretien and E. Lous, Compt. Rend. 217: 451–453 (1943).Google Scholar
  97. 97.
    G. Boef, H. B. Slot, R. A. W. D. van Leeuwen, H. Wessels, and J. W. van Spronsen, Z. Anorg. Allg. Chem. 353: 93–102 (1967).CrossRefGoogle Scholar
  98. 98.
    L. K. Van der Kamp and J. W. van Spronsen, Z. Anorg. Allg. Chem. 361: 328–332 (1968).CrossRefGoogle Scholar
  99. 99.
    I. S. Morozov and A. T. Simonich, Zh. Neorg. Khim. 2: 1907–1914 (1957).Google Scholar
  100. 100.
    K. N. Semenenko, T. N. Naumova, L. N. Gorokhov, and A. V. Novoselova, Dokl. Akad. Nauk SSSR 154: 648–649 (1964).Google Scholar
  101. 101.
    V. S. Balikhin and V. A. Reznichenko, Titan. Ego Splavy, Akad. Nauk SSSR, Inst. Met. (9): 225–229 (1963).Google Scholar
  102. 102.
    R. F. Belt and H. Scott, Inorg. Chem. 3: 1785–1788 (1964).CrossRefGoogle Scholar
  103. 103.
    A. P. Palkin and O. K. Belousov, Zh. Neorg. Khim. 2: 1620–1628 (1957).Google Scholar
  104. 104.
    A. P. Palkin and N. V. Ostrikova, Zh. Neorg. Khim. 7: 2635–2636 (1962).Google Scholar
  105. 105.
    P. I. Fedorov and S. K. Nedev, Zh. Neorg. Khim. 10: 2717–2719 (1965).Google Scholar
  106. 106.
    T. N. Larionova and E. P. Vognikova, Zh. Neorg. Khim. 12: 2184–2185 (1967).Google Scholar
  107. 107.
    I. P. Palyura and A. P. Palkin, Zh. Neorg. Khim. 9: 2668–2669 (1964).Google Scholar
  108. 108.
    G. V. Seryakov and L. A. Nisel’son, Zh. Prikl. Khim. 35: 482–486 (1962).Google Scholar
  109. 109.
    E. G. M. Tornqvist, J. T. Richardson, Z. W. Wilchinsky, and R. W. Looney, J. Catal. 8: 189–196 (1967).CrossRefGoogle Scholar
  110. 110.
    I. S. Morozov and D. Ya. Topygin, Zh. Neorg. Khim. 2: 1915–1921 (1957).Google Scholar
  111. 111.
    N. D. Denisova, E. K. Safronov, and O. N. Bystrova, Zh. Neorg. Khim. 11: 24122413 (1966).Google Scholar
  112. 112.
    A. J. Shor, W. T. Smith, Jr., and M. A. Bredig, J. Phys. Chem. 70: 1511–1515 (1966).CrossRefGoogle Scholar
  113. 113.
    O. R. Gavrilov, A. S. Krivoshein, and L. A. Nisel’son, Zh. Neorg. Khim. 11: 2392–2393 (1966).Google Scholar
  114. 114.
    I. S. Morozov, V. A. Tverskov, and G. I. Kurapova, Zh. Neorg. Khim. 9: 2196–2202 (1964).Google Scholar
  115. 115.
    I. S. Morozov and C. Li, Zh. Neorg. Khim. 8: 2733–2736 (1963).Google Scholar
  116. 116.
    G. Jander and K. H. Swart, Z. Anorg. Allg. Chem. 301: 54–79 (1959).CrossRefGoogle Scholar
  117. 117.
    Ya. A. Fialkov and Ya. B. Bur’yanov, Dokl. Akad. Nauk SSSR 92: 585–588 (1953).Google Scholar
  118. 118.
    W. Fischer and O. Jübermann, Z. Anorg. Allg. Chem. 235: 337–351 (1938).CrossRefGoogle Scholar
  119. 119.
    L. A. Nisel’son, A. I. Pustil’nik, O. R. Gavrilov, and V. A. Rodin, Zh. Neorg. Khim. 10: 2339–2346 (1965).Google Scholar
  120. 120.
    I. S. Morozov, B. G. Korshunov, and A. T. Simonich, Zh. Neorg. Khim. 1: 1646–1657 (1956).Google Scholar
  121. 121.
    A. I. Pustil’nik, O. R. Gavrilov, V. A. Rodin, and L. A. Nisel’son, Zh. Neorg. Khim. 12: 2186–2189 (1967).Google Scholar
  122. 122.
    B. A. Boitovich, A. S. Barabanova, and N. Kh. Tumanova, Zh. Neorg. Khim. 6: 2545–2549 (1961).Google Scholar
  123. 123.
    H. Houtgraaf, H. J. Rang, and L. Vollbracht, Rec. Tray. Chico. 72: 978–988 (1953).CrossRefGoogle Scholar
  124. 124.
    B. G. Korshunov and V. I. Gol’din, Zh. Neorg. Khim. 6: 1642–1644 (1961).Google Scholar
  125. 125.
    B. G. Korshunov, G. A. Lovetskaya, and A. A. Palant, Zh. Neorg. Khim. 12: 203–209 (1967).Google Scholar
  126. 126.
    I. S. Morozov, Zh. Neorg. Khim. 1: 2792–2802 (1956).Google Scholar
  127. 127.
    B. G. Korshunov, V. I. Ionov, T. A. Baklashova, and V. V. Kakorev, Izv. Bysshikh Ucheb. Zaved., Tsvet. Met. (6): 114–118 (1960).Google Scholar
  128. 128.
    Y. Li, Zh. Neorg. Khim. 5: 2804–2807 (1960).Google Scholar
  129. 129.
    H. Houtgraff and A. M. de Roos, Rec. Tray. Chico. 72: 963–977 (1953).CrossRefGoogle Scholar
  130. 130.
    V. Gutmann, Z. Anorg. All. Chem. 269: 279–291 (1952).CrossRefGoogle Scholar
  131. 131.
    R. C. Paul, K. C. Malhotra, and G. Singh, J. Indian Chem. Soc. 37: 105–110 (1960).Google Scholar
  132. 132.
    B. F. Markov, B. A. Voitovich, and A. S. Barabanova, Ukr. Khim. Zh. 27: 580–584 (1961).Google Scholar
  133. 133.
    H. Spandau and E. Brunneck, Z. Anorg. Allg. Chem. 270: 201–214 (1952).CrossRefGoogle Scholar
  134. 134.
    V. A. Plotnikov and U. I. Shvartsman, J. Phys. Chem. USSR 12: 120–130 (1938).Google Scholar
  135. 135.
    V. A. Plotnikov and U. I. Shvartsman, Mem. Inst. Chem., Ukr. Acad. Sci. 4: 137151 (1937).Google Scholar
  136. 136.
    V. A. Plotnikov and U. I. Shvartsman, Mem. Inst. Chem. Ukr., Acad. Sci. 4: 299308 (1937).Google Scholar
  137. 137.
    J. D. Corbett and N. W. Gregory, J. Amer. Chem. Soc. 75: 5238–5242 (1953).CrossRefGoogle Scholar
  138. 138.
    N. A. Pushin and J. Makuc, Z. Anorg. Allg. Chem. 237: 177–182 (1938).CrossRefGoogle Scholar
  139. 139.
    C. T. H. M. Cronenberg and J. W. van Spronsen, Z. Anorg. Allg. Chem. 354: 103110 (1967).Google Scholar
  140. 140.
    V. I. Mikheeva, S. M. Arkhipov, and T. V. Revzina, Zh. Neorg. Khim. 13: 1697–1698 (1968).Google Scholar
  141. 141.
    V. A. Plotnikov and V. I. Mikhailovskaya, Mem. Inst. Chem., Ukr. Acad. Sci. 4: 121–124 (1937).Google Scholar
  142. 142.
    R. F. Adamsky and C. M. Wheeler, Jr., J. Phys. Chem. 58: 225–227 (1954).CrossRefGoogle Scholar
  143. 143.
    L. N. Eingorn, Ukr. Khim. Zh. 16: 404–413 (1950).Google Scholar
  144. 144.
    Ya. A. Fialkov and O. I. Shor, Zh. Obshch. Khim. 23: 357–363 (1953).Google Scholar
  145. 145.
    E. L. Starokadomskaya, J. Gen. Chem. USSR 9: 840–844 (1939).Google Scholar
  146. 146.
    J. L. Daniel and N. W. Gregory, J. Amer. Chem. Soc. 72: 3801–3803 (1950).CrossRefGoogle Scholar
  147. 147.
    A. T. Nizhnik, J. Gen. Chem. USSR 7: 1935–1947 (1937).Google Scholar
  148. 148.
    R. H. Moore, J. Chem. Eng. Data 8: 164–167 (1963).CrossRefGoogle Scholar
  149. 149.
    H. Grothe and C. A. Piel, Z. Elektrochem. 54: 210–215 (1950).Google Scholar
  150. 150.
    V. A. Plotnikov and U. I. Shvartsman, Mem. Inst. Chem. Acad. Sci. Ukr. SSR 3: 387–400 (1936).Google Scholar
  151. 151.
    R. Midorikawa, J. Electrochem. Soc. Jap. 23: 127–129 (1955).Google Scholar
  152. 152.
    B. G. Korshunov, A. M. Reznik, and I. S. Morozov, Tr. Mosk. Inst. Tonkoi Khim. Tekhnol. M. V. Lomonosova (7): 127–139 (1958).Google Scholar
  153. 153.
    I. S. Morozov, V. A. Tverskov, and G. I. Kurapova, Zh. Neorg. Khim. 9: 2196–2202 (1964).Google Scholar
  154. 154.
    B. G. Korshunov and E. D. Lapkina, Zh. Neorg. Khim. 8: 2585–2588 (1963).Google Scholar
  155. 155.
    B. G. Korshunov and L. A. Vyrskaya, Zh. Neorg. Khim. 7: 1403–1407 (1962).Google Scholar
  156. 156.
    B. A. Il’ichev and A. M. Vladimirova, Titan Splavy, Akad. Nauk SSSR, Inst. Met. (5): 148–166 (1961).Google Scholar
  157. 157.
    N. D. Chikanov, A. P. Palkin, and M. K. Bizyaeva, Izv. Vyssh. Ucheb. Zaved., Khim. Tekhnol. 6: 355–360 (1963).Google Scholar
  158. 158.
    I. S. Morozov and V. A. Krokhin, Zh. Neorg. Khim. 7: 2400–2410 (1962).Google Scholar
  159. 159.
    N. K. Druzhinina, Titan Splavy, Akad. Nauk SSSR, Inst. Met., (5): 225–232 (1961).Google Scholar
  160. 160.
    I. S. Morozov and D. Ya. Toptygin, Zh. Neorg. Khim. 2: 2129–2135 (1957).Google Scholar
  161. 161.
    B. G. Korshunov, E. D. Lidina, and Z. N. Shevtsova, Zh. Neorg. Khim. 8: 15311532 (1963).Google Scholar
  162. 162.
    B. G. Korshunov and L. A. Vyrskaya, Zh. Neorg. Khim. 6: 2815–2816 (1961).Google Scholar
  163. 163.
    A. S. Barabanova and B. A. Voitovich, Ukr. Khim. Zh. 30: 1298–1304 (1964).Google Scholar
  164. 164.
    N. D. Chikanov and A. A. Dubyanskaya, Zh. Neorg. Khim. 12: 3187–3191 (1967).Google Scholar
  165. 165.
    N. D. Chikanov and A. A. Ivanova, Zh. Neorg. Khim. 12: 2219–2224 (1967).Google Scholar
  166. 166.
    B. G. Korshunov and N. I. Kaloev, Zh. Neorg. Khim. 13: 2547–2551 (1968).Google Scholar
  167. 167.
    H. Gerding and H. Houtgraaf, Rec. Tray. Chim. 72: 21–38 (1953).CrossRefGoogle Scholar
  168. 168.
    H. Gerding and H. Houtgraaf, Rec. Tray. Chim. 73: 759–770 (1954).CrossRefGoogle Scholar
  169. 169.
    H. Gerding, Rec. Tray. Chim. 75: 589–593 (1956).CrossRefGoogle Scholar
  170. 170.
    A. E. van Arkel, Chem. Weekbl. 52: 193–197 (1956).Google Scholar
  171. 171.
    D. A. Long and R. T. Bailey, Trans. Faraday Soc. 59: 594–598 (1963).CrossRefGoogle Scholar
  172. 172.
    G. L. Carlson, Spectrochim. Acta 19: 1291–1307 (1963).CrossRefGoogle Scholar
  173. 173.
    C. D. Schmulbach, J. Inorg. Nucl. Chem. 26: 745–749 (1964).CrossRefGoogle Scholar
  174. 174.
    K. Balasubrahmanyam and L. Nanis, J. Chem. Phys. 42: 676–680 (1965).CrossRefGoogle Scholar
  175. 175.
    D. E. H. Jones and J. L. Wood, Spectrochim. Acta 23A: 2695–2697 (1967).CrossRefGoogle Scholar
  176. 176.
    A. Byström and K. A. Wilhelmi, Acta Chem. Scand. 5: 1003–1010 (1951).CrossRefGoogle Scholar
  177. 177.
    M. E. Peach, V. L. Tracy, and T. C. Waddington, J. Chem. Soc. (A) 366–367 (1969).Google Scholar
  178. 178.
    R. W. G. Wyckoff, Crystal Structures, 2nd ed., Vol. 3. John Wiley (Interscience ), New York (1965).Google Scholar
  179. ’ N. C. Baenziger, Acta Cryst. 4: 216–219 (1951).CrossRefGoogle Scholar
  180. 180.
    J. A. Ibers, Acta Cryst. 15: 967–972 (1962).CrossRefGoogle Scholar
  181. 181.
    R. H. Wood and L. A. D’Orazio, Inorg. Chem. 5: 682–684 (1966).CrossRefGoogle Scholar
  182. 182.
    B. Trémillon and G. Letisse, J. Electroanal. Chem. Interfacial Electrochem. 17: 371–386 (1968).CrossRefGoogle Scholar
  183. 183.
    J. R. Money and R. H. Moore, J. Phys. Chem. 67: 748–752 (1963).CrossRefGoogle Scholar
  184. 184.
    R. S. Juvet, V. S. Shaw, and M. A. Khan, J. Amer. Chem. Soc. 91: 3788–3792 (1969).CrossRefGoogle Scholar
  185. 185.
    G. Letisse and B. Trémillon, J. Electronal. Chem. Interfacial Electrochem. 17: 387–394 (1968).CrossRefGoogle Scholar
  186. 186.
    N. J. Bjerrum, C. R. Boston, and G. P. Smith, Inorg. Chem. 6: 1162: 1172 (1967).Google Scholar
  187. 187.
    H. L. Davis, N. J. Bjerrum, and G. P. Smith, Inorg. Chem. 6: 1172–1178 (1967).CrossRefGoogle Scholar
  188. 188.
    N. J. Bjerrum and G. P. Smith, Inorg. Chem. 6: 1968–1972 (1967).CrossRefGoogle Scholar
  189. 189.
    V. A. Plotnikov and N. S. Fortunatov, Mem. Inst. Chem. Ukr. Acad. Sci. 3: 123–128 (1936).Google Scholar
  190. 190.
    V. P. Calkins, U. S. At. Energy Comm. TID-5290: 765–769 (1958).Google Scholar
  191. 191.
    G. L. Groshev, S. M. Danov, and V. S. Shinyaeva, Tr. Khim. Khim. Tekhnol. (3): 3033 (1965).Google Scholar
  192. 192.
    J. D. Corbett, W. J. Burkhard, and L. F. Druding, J. Amer. Chem. Soc. 83: 76–80 (1961).CrossRefGoogle Scholar
  193. 193.
    D. Cubicciotti, J. Amer. Chem. Soc. 74: 1198–1200 (1952).CrossRefGoogle Scholar
  194. 194.
    J. D. Corbett, Inorg. Chem. 1: 700–704 (1962).CrossRefGoogle Scholar
  195. 195.
    R. D. Barnes, U. S. At. Energy Comm. Ts-T-36: 1–51 (1965).Google Scholar
  196. 196.
    R. A. Potts, R. D. Barnes, and J. D. Corbett, Inorg. Chem. 7: 2558–2565 (1968).CrossRefGoogle Scholar
  197. 197.
    T. C. F. Munday and J. D. Corbett, Inorg. Chem. 5: 1263–1268 (1966).CrossRefGoogle Scholar
  198. 198.
    L. E. Topol, S. J. Yosim, and R. A. Osteryoung, J. Phys. Chem. 65: 1511–1516 (1961).CrossRefGoogle Scholar
  199. 199.
    L. E. Topol and R. A. Osteryoung, J. Phys. Chem. 66: 1587–1591 (1962).CrossRefGoogle Scholar
  200. 200.
    C. R. Boston and G. P. Smith, J. Phys. Chem. 66: 1178–1181 (1962).CrossRefGoogle Scholar
  201. 201.
    C. R. Boston, G. P. Smith, and L. C. Howick, J. Phys. Chem. 67: 1849–1852 (1963).CrossRefGoogle Scholar
  202. 202.
    J. D. Corbett, F. C. Albers, and R. A. Sallach, Inorg. Chim. Acta 2: 22–26 (1968).CrossRefGoogle Scholar
  203. 203.
    A. Hershaft and J. D. Corbett, Inorg. Chem. 2: 979–985 (1963).CrossRefGoogle Scholar
  204. 204.
    J. D. Corbett, Inorg. Chem. 7: 198–208 (1968).CrossRefGoogle Scholar
  205. 205.
    H. A. Dye and D. M. Gruen, Inorg. Chem. 4: 1173–1180 (1965).CrossRefGoogle Scholar
  206. 206.
    C. A. Angell and D. M. Gruen, J. Phys. Chem. 70: 1601–1609 (1966).CrossRefGoogle Scholar
  207. 207.
    C. A. Angell and D. M. Gruen, J. Inorg. Nucl. Chem. 29: 2243–2247 (1967).CrossRefGoogle Scholar
  208. 208.
    J. R. Morrey, Inorg. Chem. 2: 163–169 (1963).CrossRefGoogle Scholar
  209. 209.
    Yu. K. Delimarskii and B. F. Markov, Electrochemistry of Fused Salts, Sigma Press, Washington, D. C. (1961).Google Scholar
  210. 210.
    Yu. K. Delimarskii, E. M. Skobets, and V. D. Ryabokon, J. Phys. Chem. USSR 21: 843–848 (1947).Google Scholar
  211. 211.
    Yu. K. Delimarkii, L. S. Berenblyum, and I. N. Sheiko, Ukr. Khim. Zh. 16: 254–263 (1950).Google Scholar
  212. 212.
    Yu. K. Delimarskii, Zh. Fiz. Khim. 29: 28–38 (1955).Google Scholar
  213. 213.
    Yu. K. Delimarskii and R. S. Khaimovich, Ukr. Khim. Zh. 15: 340–350 (1949).Google Scholar
  214. 214.
    Yu. K. Delimarskii, Ukr. Khim. Zh. 16: 414–437 (1950).Google Scholar
  215. 215.
    Yu. K. Delimarskii, L. S. Berenblyum, and I. N. Sheiko, Zh. Fiz. Khim. 25: 398–403 (1951).Google Scholar
  216. 216.
    W. H. Wade, G. O. Twellmeyer, S. J. Yntema, and L. F. Yntema, Trans. Electrochem. Soc. 78: 77–90 (1940).CrossRefGoogle Scholar
  217. 217.
    R. G. Verdieck and L. F. Yntema, J. Phys. Chem. 46: 344–352 (1942).CrossRefGoogle Scholar
  218. 218.
    R. Wehrman and L. F. Yntema, J. Phys. Chem. 48: 259–268 (1944).CrossRefGoogle Scholar
  219. 219.
    Yu. K. Delimarskii, J. Phys. Chem. SSSR 19: 465–468 (1945).Google Scholar
  220. 220.
    Yu. K. Delimarskii, Zap. Inst. Khim., Akad. Nauk SSSR 8: 23–30 (1946).Google Scholar
  221. 221.
    V. A. Plotnikov, E. I. Kirichenko, and N. S. Fortunatov, Zap. Inst. Khim., Akad. Nauk SSSR 7: 159–171 (1940).Google Scholar
  222. 222.
    R. Gut, Hely. Chim. Acta 43: 830–842 (1960).CrossRefGoogle Scholar
  223. 223.
    Yu. K. Delimarskii, E. M. Skobets, and L. S. Berenblyum, Zh. Fiz. Khim. 22: 11081115 (1948).Google Scholar
  224. 224.
    N. G. Chovnyk, Dokl. Akad. Nauk SSSR 87: 1033–1034 (1952).Google Scholar
  225. 225.
    N. G. Chovnyk, Zh. Fiz. Khim. 30: 277 (1956).Google Scholar
  226. 226.
    N. G. Chovnyk, Dokl. Akad. Nauk SSSR 95: 599–601 (1954).Google Scholar
  227. 227.
    N. G. Chovnyk, Dokl. Akad. Nauk SSSR 100: 495 (1955).Google Scholar
  228. 228.
    N. G. Chovnyk and V. V. Vashchenko, Zh. Neorg. Khim. 1: 710–712 (1956).Google Scholar
  229. 229.
    N. G. Chovnyk, Tr. Chetvertogo Soveshch. Elektrokhim., Moscow 358–361 (1956).Google Scholar
  230. 230.
    R. H. Moore, J. Chem. Eng. Data 9: 502–505 (1964).CrossRefGoogle Scholar
  231. 231.
    R. V. Ammon, J. Inorg. Nucl. Chem. 28: 2569–2578 (1966).CrossRefGoogle Scholar
  232. 232.
    R. H. Moore and W. L. Lyon, U. S. At. Energy Comm. HW-59147: 1–36 (1959).Google Scholar
  233. 233.
    R. H. Moss, thesis, University Microfilms (Ann Arbor, Michigan), Publ. No. 12, 730 (1955).Google Scholar
  234. 234.
    C. R. Boston, L. F. Grantham, and S. J. Yosim, J. Electrochem. Soc. 117: 28–31 (1970).CrossRefGoogle Scholar
  235. 235.
    Ya. A. Fialkov and O. I. Shor, J. Gen. Chem. USSR 23: 369–373 (1953).Google Scholar
  236. 236.
    W. Isbekov, Z. Anorg. Allg. Chem. 158: 87–93 (1926).CrossRefGoogle Scholar
  237. 237.
    R. W. Laity, Ann. N. Y. Acad. Sci. 79: 997–1022 (1960).Google Scholar
  238. 238.
    Yu. V. Baimakov and V. I. Shelomov, Trans. Leningrad Ind. Inst. Sect. Met. (1): 3648 (1938).Google Scholar
  239. 239.
    V. Gutmann and R. Himml, Z. Physik. Chem. 4: 157–164 (1955).CrossRefGoogle Scholar
  240. 240.
    E. Ya. Gorenbein and M. A. Abramova, Zh. Obshch. Khim. 20: 749–754 (1950).Google Scholar
  241. 241.
    E. Ya. Gorenbein and M. S. Kavet’skii, Zh. Fiz. Khim. 37: 174–176 (1962).Google Scholar
  242. 242.
    Ya. P. Mezhennii, Mem. Inst. Chem. Acad. Sci. Ukr. SSR 4: 413–424 (1938).Google Scholar
  243. 243.
    M. G. Kher and P. S. Mene, Indian J. Chem. 1: 185–186 (1963).Google Scholar
  244. 244.
    G. A. Abramov and N. A. Emel’yanov, Trans. Leningrad Ind. Inst. Sect. Met., (4): 54–59 (1940).Google Scholar
  245. 245.
    C. G. Fink and D. N. Solanki, Trans. Electrochem. Soc. 91: 203–219 (1947).CrossRefGoogle Scholar
  246. 246.
    R. Piontelli, G. Sternheim, and M. Francini, J. Chem. Phys. 24: 1113–1114 (1956).CrossRefGoogle Scholar
  247. 247.
    R. Piontelli, G. Sternheim, and F. Fumagalli, Ric. Sci. 28: 160–172 (1958).Google Scholar
  248. 248.
    N. G. Chovnyk, V. V. Vashchenko, and M. S. Polyantseva, Ukr. Khim. Zh. 32: 454–456 (1966).Google Scholar
  249. 249.
    E. Ya. Gorenbein, Univ. Kiev., Bull. Sci., Rec. Chim. 2, 115–28 (1936).Google Scholar
  250. 250.
    V. A. Plotnikov and E. Ya. Gorenbein, Mem. Inst. Chem. Ukr. Acad. Sci. 3: 471–487 (1936).Google Scholar
  251. 251.
    V. A. Plotnikov and O. K. Kudra, Mem. Inst. Chem. Ukr. Acad. Sci. 3: 147–151 (1936).Google Scholar
  252. 252.
    V. A. Plotnikov and I. B. Barmashenko, Mem. Inst. Chem. Ukr. Acad. Sci. 3: 177–187 (1936).Google Scholar
  253. 253.
    J. P. Mezhennii, Mem. Inst. Chem. Ukr. Acad. Sci. 3: 211–236 (1936).Google Scholar
  254. 254.
    V. A. Kikets, Mem. Inst. Chem. Ukr. Acad. Sci. 3: 489–507 (1936).Google Scholar
  255. 255.
    A. M. Ruban, J. Gen. Chem. USSR 7: 1419–1426 (1937).Google Scholar
  256. 256.
    E. Ya. Gorenbein, J. Gen. Chem. USSR 9: 2041–2047 (1939).Google Scholar
  257. 257.
    E. Ya. Gorenbein, J. Gen. Chem. USSR 11: 925–933 (1941).Google Scholar
  258. 258.
    V. A. Plotnikov, Rab. Khim. Rastvorov Kompleks. Soedin., Akad. Nauk Ukr. SSR (2): 3–71 (1959).Google Scholar
  259. 259.
    A. I. Kryagova, J. Gen. Chem. USSR 9: 2061–2066 (1939).Google Scholar
  260. 260.
    V. Gutmann and G. Schöber, Monatsh. Chem. 87: 792–793 (1956).CrossRefGoogle Scholar
  261. 261.
    V. Gutmann and M. Baaz, Monatsh. Chem. 90: 729–743 (1959).CrossRefGoogle Scholar
  262. 262.
    F. Klanberg and H. W. Kohlschutter, Z. Naturforsch. 16b: 69–71 (1961).Google Scholar
  263. 263.
    W. Sundermeyer, Angew. Chem. 77:241–258 (1965). For English translation see, Angew. Chem. Int. Edit. 4: 222–238 (1965).Google Scholar
  264. 264.
    R. H. Moore, J. R. Morrey, and E. E. Voiland, J. Phys. Chem. 67: 744–747 (1963).CrossRefGoogle Scholar
  265. 265.
    R. H. Moore, Inorg. Chem. 3: 1738–1740 (1964).CrossRefGoogle Scholar
  266. 266.
    J. R. Morrey and R. H. Moore, J. Phys. Chem. 67: 748–752 (1963).CrossRefGoogle Scholar
  267. 267.
    Yu. K. Delimarskii, J. Gen. Chem. USSR 11: 1081–1091 (1941).Google Scholar
  268. 268.
    A. P. Palkin and O. K. Belousov, J. Inorg. Chem. USSR 2 (7): 273–285 (1957).Google Scholar
  269. 269.
    I. N. Sheiko and V. T. Barchuk, Ukr. Khim. Zh. 30: 577–581 (1964).Google Scholar
  270. 270.
    B. G. Korshunov and D. A. Rokhlenko, Zh. Prikl. Khim. 37: 1941–1946 (1964).Google Scholar
  271. 271.
    W. Sundermeyer and O. Glemser, Angew. Chem. 70: 625–627 (1958).CrossRefGoogle Scholar
  272. 272.
    W. Sundermeyer, Berichte 97: 1069–1074 (1964).CrossRefGoogle Scholar
  273. 273.
    W. Sundermeyer and W. Verbeek, Angew. Chem. Int. Ed. (Engl.) 5: 1–6 (1966).CrossRefGoogle Scholar
  274. 274.
    W. Sundermeyer, O. Glemser, and K. Kleine-Weischede, Berichte 95: 1829–1831 (1962).CrossRefGoogle Scholar
  275. 275.
    W. Sundermeyer, Angew. Chem. 74: 717 (1962).CrossRefGoogle Scholar
  276. 276.
    W. Sundermeyer, Berichte 96: 1293–1297 (1963).CrossRefGoogle Scholar
  277. 277.
    W. Sundermeyer, German Patent 1,080,077 (April 21, 1960) (Cl. 12 i).Google Scholar
  278. 278.
    W. Sundermeyer, Z. Anorg. Allg. Chem. 313: 290–295 (1961).CrossRefGoogle Scholar
  279. 279.
    M. Fild, W. Sundermeyer, and O. Glemser, Berichte 97: 620–621 (1964).CrossRefGoogle Scholar
  280. 280.
    W. Sundermeyer and W. Meise, Z. Anorg. Allg. Chem. 317: 334–342 (1962).CrossRefGoogle Scholar
  281. 281.
    W. Verbeek and W. Sundermeyer, Angew. Chem. Int. Ed. (Engl.) 5: 314 (1966).CrossRefGoogle Scholar
  282. 282.
    D. B. Bruce, A. J. S. Sorrie, and R. H. Thomson, J. Chem. Soc. 2403–2406 (1953).Google Scholar
  283. 283.
    A. K. Hoffmann, Belgian Patent 669,396 (March 9, 1965 ).Google Scholar
  284. 284.
    M. Taube, M. Mielcarski, A. Kowalew, and S. Porturaj-Gutniak, Nukleonika 10: 639–640 (1965).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • C. R. Boston
    • 1
  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations