Advertisement

Liquid Extraction from Molten Salts

  • Yizhak Marcus

Abstract

Several technologies use molten salts as reaction media or as solvents for valuable solutes, and it is necessary to remove the solute into another phase at a certain stage. This can be done by volatilization, by electrodeposition, by precipitation, or finally by extraction into another liquid phase. Because of the properties of molten salts, their being ionic liquids with predominantly Coulombic forces between the ions, and the circumstances of their use, that is, relatively high temperatures, only a limited number of materials is suitable as the second liquid phase. These are certain metals with appropriate melting points (such as bismuth), certain molten salts with predominantly covalent forces between their ions, making them immiscible with ionic melts (such as silver bromide or boron oxide), and certain organic materials that are thermally stable and have high boiling points (such as terphenyls). Only the first category has as yet found practical use in technology.(1)

Keywords

Liquid Extraction Molten Salt Boron Oxide Reciprocal System Halide Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Moulton, W. R. Grimes, and J. H. Shaffer, in: Molten Salts ( G. Mamantov, ed.), pp. 479–527, Marcel Dekker, New York (1969).Google Scholar
  2. 2.
    Y. Marcus, in: Solvent Extraction Chemistry ( D. Dyrssen, J. O. Lilienzin, and J. Rydberg, eds.), pp. 555–580, North-Holland, Amsterdam (1967).Google Scholar
  3. 3.
    Y. Marcus and A. S. Kertes, Ion Exchange and Solvent Extraction of Metal Complexes, John Wiley ( Interscience ), London (1969).Google Scholar
  4. 4.
    A. S. Kertes and G. Markovits, J. Phys. Chem. 72: 4202 (1968).Google Scholar
  5. 5.
    Y. Marcus, Pure Appl. Chem. 18: 459 (1969).Google Scholar
  6. 6.
    D. W. Bareis, R. H. Wiswall, Jr., and V. E. Winsche, Nucleonics 12 (7): 16 (1954).Google Scholar
  7. 7.
    O. E. Dwyer, R. J. Teitel, and R. H. Wiswall, Jr., in: Proceeding of International Conference on Peaceful Uses of Atomic Energy, Geneva 1955, Vol. 9, p. 604, United Nations, New York (1956).Google Scholar
  8. 8.
    W. S. Ginell, Ind. Eng. Chem. 51: 185 (1959).Google Scholar
  9. 9.
    C. J. Raseman, H. Suskind, and C. H. Waide, Chem. Eng. Progr. 53(2):86-F (1957).Google Scholar
  10. 10.
    R. H. Wiswall, Jr., and J. J. Egan, in: Thermodynamics of Nuclear Materials, Proceedings of I.A.E.A. Symposium 1962, pp. 345–364, I.A.E.A., Vienna (1962).Google Scholar
  11. 11.
    C. F. Baes, Jr., cited by W. R. Grimes, U.S.A.E.C. Rep. ORNL 3708: 311 (1964).Google Scholar
  12. 12.
    L. M. Ferris, J. C. Mailen, F. J. Smith, E. D. Nogueira, J. H. Shaffer, D. M. Moulton, C. J. Barton, and R. G. Ross, in: Proceedings of the Third International Protactinium Conference, Elmau (1969).Google Scholar
  13. 13.
    R. J. Heus and J. J. Egan, J. Electrochem. Soc. 107: 824 (1960).Google Scholar
  14. 14.
    R. H. Moore, U.S.A.E.C. Rep. HW-67574 (1960).Google Scholar
  15. 15.
    P. Chiotti, and J. S. Klepfer, 148th American Chemical Society Meeting, Chicago, 1964, Abstract 39.Google Scholar
  16. 16.
    D. L. G. Rowlands, J. D. Wilson, C. A. J. McInnes, and P. G. Watson, in: Thermodynamics of Nuclear Materials, Proceedings of I.A.E.A.. Sumposium 1967, pp. 181–194, I.A.E.A., Vienna (1968).Google Scholar
  17. 17.
    S. Yamagishi and Y. Kamemoto, Nippon Genshiryoku Gakkaishi 5: 210 (1963)Google Scholar
  18. S. Yamagishi and Y. Kamemoto, Nucl. Sci. Abstr. 17: 21683 (1963).Google Scholar
  19. 18.
    S. Yamagishi and Y. Kamemoto, Nippon Genshiryoku Gakkaishi 6: 158 (1964)Google Scholar
  20. S. Yamagishi and Y. Kamemoto, Nucl. Sci. Abstr. 18:19983 (1964)].Google Scholar
  21. 19.
    S. Yamagishi and Y. Kamemoto, Nippon Genshiryoku Gakkaishi 6: 500 (1964)Google Scholar
  22. S. Yamagishi and Y. Kamemoto, Nucl. Sci. Abstra. 18:43498 (1964)].Google Scholar
  23. 20.
    L. J. Mullins, A. J. Beaumont, and J. A. Leary, J. Inorg. Nucl. Chem. 30: 147 (1968).Google Scholar
  24. 21.
    I. N. Belyaev, Ups. Khim. 29:899 (1960)Google Scholar
  25. I. N. Belyaev, Russ. Chem. Rev. 29: 428 (1960).Google Scholar
  26. 22.
    G. J. Janz, Molten Salt Handbook, pp. 97–101, Academic Press, New York (1967).Google Scholar
  27. 23.
    C. Sinistri, P. Franzosini, and M. Rolla, An Atlas of Miscibility Gaps in Molten Salt Systems, University of Pavia, Italy (1968).Google Scholar
  28. 24.
    R. F. Guenther, J. Inorg. Nucl. Chem. 27: 1427 (1965).Google Scholar
  29. 25.
    J. H. Kennedy, J. Phys. Chem. 65: 1030 (1961).Google Scholar
  30. 26.
    R. H. Moore, J. Chem. Eng. Data 9: 502 (1964).Google Scholar
  31. 27.
    E. C. Freiling, in: Thermodynamics of Nuclear Materials, I.A.E.A. Symposium, 1965, pp. 435–457, I.A.E.A., Vienna (1966).Google Scholar
  32. 28.
    P. V. Clark, Physical Properties of Fused Salt Mixtures, Vol. 1 and 2, Clearinghouse of Federal Scientific and Technical Information, U. S. Department of Commerce, Washington, D. C., (1965 and 1966 ).Google Scholar
  33. 29.
    M. Zangen and Y. Marcus, Isr. J. Chem. 2: 49 (1964).Google Scholar
  34. 30.
    O. Vittori, Doctoral dissertation, Université de Lyon, France, 1968;Google Scholar
  35. C. Gonnet, O. Vittori, and M. Porthault, Compt. Rend. 267: 714 (1968).Google Scholar
  36. 31.
    N. M. Isaac, P. R. Fields, and D. M. Gruen, J. Inorg. Nucl. Chem. 21: 152 (1961).Google Scholar
  37. 32.
    D. Herzog, French A.E.C. Rep. CEA-R 2628 (1964).Google Scholar
  38. 33.
    Z. Borkowska, M. Mielcarski, and M. Taube, J. Inorg. Nucl. Chem. 26: 359 (1964).Google Scholar
  39. 34.
    R. V. Ammon, J. Inorg. Nucl. Chem. 26: 2569 (1966).Google Scholar
  40. 35.
    I. J. Gal, J. Mendez, and J. W. Irvine, Jr., Inorg. Chem. 7: 985 (1968).Google Scholar
  41. 36.
    R. C. Scheidt and E. C. Freiling, J. Phys. Chem. 69: 1784 (1965).Google Scholar
  42. 37.
    M. H. Rowell, Inorg. Chem. 4: 1802 (1965).Google Scholar
  43. 38.
    M. Temkin, Acta Physicochim. U.R.S.S. 20: 411 (1945).Google Scholar
  44. 39.
    Y. Marcus and M. Zangen, in: Thermodynamics of Nuclear Materials, 1967, pp. 155–165, International Atomic Energy Agency, Vienna (1968).Google Scholar
  45. 40.
    D. L. Manning, R. C. Bansal, J. Braunstein, and M. Blander, J. Amer. Chem. Soc. 84: 2028 (1962).Google Scholar
  46. 41.
    M. Blander, in Molten Salt Chemistry, ( M. Blander, ed.), p. 127, John Wiley (Inter-science), New York (1964).Google Scholar
  47. 42.
    M. Blander and L. E. Topol, Inorg. Chem. 5: 1641 (1966).Google Scholar
  48. 43.
    M. Blander and S. J. Yosim, J. Chem. Phys. 39: 2610 (1963).Google Scholar
  49. 44.
    I. A. Kablukov, Zh. Russ. Khim. Obshchest. 37: 577 (1905);Google Scholar
  50. I. A. Kablukov, Zh. Russ. Khim. Obshchest. 39: 914 (1907).Google Scholar
  51. 45.
    J. E. Ricci, in: Molten Salt Chemistry ( M. Blander, ed.), pp. 326–339, John Wiley (Interscience), New York (1964).Google Scholar
  52. 46.
    J. H. Hildebrand, J. Amer. Chem. Soc. 38: 1470 (1916).Google Scholar
  53. 47.
    J. Kendall, E. J. Crittenden, and H. K. Müller, J. Amer. Chem. Soc. 45: 963 (1923).Google Scholar
  54. 48.
    M. L. Sholokhovich and G. V. Barkova, Zh. Obshch. Khim. 26: 1433 (1956).Google Scholar
  55. 49.
    I. N. Belyaev, Zh. Neorg. Khim. 1: 1501 (1956).Google Scholar
  56. 50.
    D. S. Lesnykh and A. G. Bergman, Uch. Zap. Rostov Univ. 20, Tr. Khim. Fak. (6): 19 (1954).Google Scholar
  57. 51.
    R. H. Moore, J. Chem. Eng. Data 8: 164 (1963).Google Scholar
  58. 52.
    O. N. Brensov, G. Trapp, A. V. Novoselova, and Yu. P. Simanov. Zh. Neorg. Khim. 4: 671 (1959).Google Scholar
  59. 53.
    D. F. Kirkina, A. V. Novoselova, and Yu. P. Simanov, Zh. Neorg. Khim. 1: 125 (1956).Google Scholar
  60. 54.
    O. R. Gavrilov and L. A. Niselson, Zh. Neorg. Khim. 11: 114 (1966).Google Scholar
  61. 55.
    K. Huber, E. Jost, E. Neuenschwander, M. Studier, and B. Roth, Hell. Chim. Acta 41: 2411 (1958).Google Scholar
  62. 56.
    P. I. Fedorov, A. G. Dudareva, and M. S. Nosova, Zh. Neorg. Khim. 12: 140 (1967).Google Scholar
  63. 57.
    G. Herrmann, Z. Anorg. Chem. 71: 257 (1911).Google Scholar
  64. 58.
    H. M. Davis and M. A. Knight, J. Amer. Ceram. Soc. 28 (4): 100 (1945).Google Scholar
  65. 59.
    E. T. Carlson, J. Res. Nat. Bur. Stand. 9: 825 (1932).Google Scholar
  66. 60.
    E. M. Levin and G. W. Gleek, J. Amer. Ceram. Soc. 41 (5): 175 (1958).Google Scholar
  67. 61.
    P. F. Konovalov, Dokl. Akad. Nauk SSSR 70 (5): 847 (1950).Google Scholar
  68. 62.
    E. M. Levin and S. Block, J. Amer. Ceram. Soc. 40 (3): 99 (1957).Google Scholar
  69. 63.
    E. Ingerson, G. W. Morey, and O. F. Tuttle, Amer. J. Sci. 246: 31 (1948).Google Scholar
  70. 64.
    D. E. Harrison and F. A. Hummel, J. Electrochem. Soc. 103: 491 (1956).Google Scholar
  71. 65.
    E. C. Subbaras and F. A. Hummel, J. Electrochem. Soc. 103: 29 (1956).Google Scholar
  72. 66.
    R. F. Geller and E. N. Bunting, J. Res. Nat. Bur. Stand. 18 (5): 585 (1937).Google Scholar
  73. 67.
    E. M. Levin, C. R. Robbins, and J. L. Waring, J. Amer. Ceram. Soc. 44 (2): 87 (1961).Google Scholar
  74. 68.
    E. M. Levin and C. McDaniel, J. Amer. Ceram. Soc. 45 (8): 355 (1962).Google Scholar
  75. 69.
    D. E. Rase and G. Lane, J. Amer. Ceram. Soc. 47 (1): 48 (1964).Google Scholar
  76. 70.
    J. W. Greig, Amer. J. Sci. 13 (5): 1 (1927).Google Scholar
  77. 71.
    F. P. Glasser, Amer. J. Sci. 256: 398 (1958).Google Scholar
  78. 72.
    J. W. Greig, Amer. J. Sci. 13 (5): 133 (1927);Google Scholar
  79. J. W. Greig, Amer. J. Sci. 14: 473 (1927).Google Scholar
  80. 73.
    A. S. Berezhnoi, L. I. Karyakin, and D. E. Dudovskii, Dokl. Akad. Nauk SSSR 83: 399 (1952).Google Scholar
  81. 74.
    E. N. Bunting, J. Res. Nat. Bur. Stand. 4: 131 (1930).Google Scholar
  82. 75.
    M. L. Keith, J. Amer. Ceram. Soc. 37 (10): 490 (1954).Google Scholar
  83. 76.
    F. P. Glasser, J. Phys. Chem. 63: 2085 (1959).Google Scholar
  84. 77.
    N. A. Toropov and F. Yu. Galakhov, Izv. Akad. Nauk SSSR Otd. Khim. Nauk 160 (1956).Google Scholar
  85. 78.
    M. Ibrahim and N. F. H. Bright, J. Amer. Ceram. Soc. 45: 221 (1962).Google Scholar
  86. 79.
    C. R. Robbins and E. M. Levin, Amer. J. Sci. 257: 65 (1959).Google Scholar
  87. 80.
    T. Baak, Acta Chem. Scand. 8: 1727 (1954).Google Scholar
  88. 81.
    I. N. Belyaev and A. G. Belyaeva, Zh. Neorg. Khim. 10: 252 (1965).Google Scholar
  89. 82.
    N. M. Sokolov, Zh. Obshchei. Khim. 24: 1151 (1954).Google Scholar
  90. 83.
    E. W. Roedder, Amer. J. Sci. 249 (2): 81 (1951).Google Scholar
  91. 84.
    G. W. Morey and N. L. Bowen, J. Soc. Glass Technol. 9: 226 (1925).Google Scholar
  92. 85.
    G. W. Morey, F. C. Kracek, and N. L. Bowen, J. Soc. Glass Technol. 14: 149 (1930);Google Scholar
  93. G. W. Morey, F. C. Kracek, and N. L. Bowen, J. Soc. Glass Technol. 15: 57 (1931).Google Scholar
  94. 86.
    E. M. Levin, C. R. Robbins, H. F. McMurdie, and M.K. Reser Phase Diagrams for Ceramicists, American Ceramic Society, Columbus, Ohio (1969).Google Scholar
  95. 87.
    E. P. Flint and L. S. Wells, J. Res. Nat. Bur. Stand. 17: 745 (1936).Google Scholar
  96. 88.
    R. F. Geller and E. N. Bunting, J. Res. Nat. Bur. Stand. 23: 279 (1939).Google Scholar
  97. 89.
    E. W. Roedder, Amer. J. Sci., Bowen Vol. Pt. 2: 435 (1952).Google Scholar
  98. 90.
    E. M. Levin and S. Block, J. Amer. Ceram. Soc. 41 (2): 49 (1958).Google Scholar
  99. 91.
    A. Muan, Trans. Amer. Inst. Mining Met. Eng. 203: 965 (1955).Google Scholar
  100. 92.
    M. A. Zakharchenko and A. G. Bergman, Sb. Statei Obshch. Khim. Akad. Nauk SSSR 1: 131 (1953).Google Scholar
  101. 93.
    M. A. Zakharchenko and A: G. Bergman, Tr. Novocherkassk. Politekh. Inst. 27: 3 (1956).Google Scholar
  102. 94.
    G. M. Lifshits, Zh. Obshch. Khim. 26: 20 (1956).Google Scholar
  103. 95.
    G. Flor and C. Sinistri, Ric. Sci. 38 (1968).Google Scholar
  104. 96.
    G. G. Diogenov, Sb. Statei Obshch. Khim. Akad. Nauk SSSR 2: 1227 (1953).Google Scholar
  105. 97.
    M. A. Zakharchenko and A. G. Bergman, Zh. Obshch. Khim. 25: 867 (1955).Google Scholar
  106. 98.
    I. N. Belyaev, Zh. Neorg. Khim. 3: 2805 (1958).Google Scholar
  107. 99.
    D. S. Lesnykh and A. G. Bergman, Zh. Obshchei Khim. 23: 383 (1953).Google Scholar
  108. 100.
    Tekhnicheskaya Entsiklopediya, Spravochnik, Vols. VI, VII (1930 and 1931).Google Scholar
  109. 101.
    D. S. Lesnykh, and A. G. Bergman, Zh. Fiz. Khim. 30: 1959 (1956).Google Scholar
  110. 102.
    D. S. Lesnykh, and A. G. Bergman, Zh. Obshch. Khim. 26: 1749 (1956).Google Scholar
  111. 103.
    J. H. Kennedy, J. Phys. Chem. 67: 1432 (1963).Google Scholar
  112. 104.
    M. A. Zakharchenko and A. G. Bergman, Tr. Novocherkassk. Politekh. Inst. 27: 19 (1956).Google Scholar
  113. 105.
    M. Rolla, unpublished results, cf. Sinistri et al.Google Scholar
  114. 106.
    A. G. Bergman and A. S. Arabadzhan, Zh. Neorg. Khim. 8: 1122 (1963).Google Scholar
  115. 107.
    N. S. Dombrovskaya and Z. A. Koloskaya, Izv. Sekt. Fiz. Khim. Anal. Inst. Akad. Nauk SSSR 22: 178 (1953).Google Scholar
  116. 108.
    P. P. Platonov, Tr. Mosk. Sel’skokhoz. Akad. (36): 13 (1946).Google Scholar
  117. 109.
    V. P. Radishev, Zh. Russ. Fiz. Khim. Obshchest 62: 1063 (1930).Google Scholar
  118. 110.
    C. Sinistri, G. Flor, P. Franzosini, and M. Rolla, Z. Naturforsch 22a: 53 (1967).Google Scholar
  119. 111.
    A. G. Bergman and M. L. Sholokhovich, Zh. Obshch. Khim. 25: 423 (1955).Google Scholar
  120. 112.
    C. Sinistri, P. Franzosini, A. Timidei, and M. Rolla, Z. Naturforsch 20a: 561 (1965);Google Scholar
  121. C. Sinistri, P. Franzosini, A. Timidei, and M. Rolla, Z. Naturforsch 21a: 595 (1966).Google Scholar
  122. 113.
    C. Sinistri, P. Franzosini, and G. Flor, Gazz. Chim. (Rome) 97: 275 (1967).Google Scholar
  123. 114.
    A. P. Rostkorskii, Zh. Russ. Fiz. Khim. Obshchest 61: 89 (1929).Google Scholar
  124. 115.
    V. I. Posypaiko, N. V. Khakhlova, E. A. Alekseeva, and N. S. Dombrovskaya, Zh. Neorg. Khim. 6: 719 (1961).Google Scholar
  125. 116.
    V. I. Posypaiko and N. S. Dombrovskaya, Zh. Neorg. Khim. 6: 361–722 (1961).Google Scholar
  126. 117.
    A. P. Palkin, Tr. Voronezh, Gos. Univ. 17: 3 (1950).Google Scholar
  127. 118.
    A. P. Palkin and T. A. Polivanova, Zh. Neorg. Khim. 8: 492 (1963).Google Scholar
  128. 119.
    T. A. Polivanova, Zh. Neorg. Khim. 7: 737 (1962).Google Scholar
  129. 120.
    D. S. Lesnykh and A. G. Bergman, Zh. Obshch. Khim. 23: 557 (1953).Google Scholar
  130. 121.
    D. S. Lesnykh and A. G. Bergman, Uch. Zap. Rostov Univ. 20, Tr. Khim. Fak. (6): 19 (1954).Google Scholar
  131. 122.
    M. L. Sholokhovich, D. S. Lesnykh, and G. A. Buchalova, Dokl. Akad. Nauk SSSR 103: 261 (1955).Google Scholar
  132. 123.
    N. N. Volkov and L. A. Dubinskaya, Izv. Fiz. Khim. Nauch.-Issled. Inst. Irkutsk. Univ. 2: 45 (1953).Google Scholar
  133. 124.
    K. A. Bolshakov and P. I. Federov, Izv. Vyssh. Ucheb. Zaved. Tsvet. Met. 2: 52 (1959).Google Scholar
  134. 125.
    D. M. Gruen, S. Fried, P. Graf, and R. C. McBeth, Proc. U. N. Int. Conf. Peaceful Uses At. Energy, 28: 112 (1958).Google Scholar
  135. 128.
    B. L. Dunicz and R. C. Scheidt, U.S.A.E.C. Rep. USNRDL-TR-752 (1964).Google Scholar
  136. 129.
    M. H. Rowell, U.S.A.E.C. Rep. USNRDL-TR-760 (1964).Google Scholar
  137. 130.
    B. L. Dunicz and R. C. Scheidt, J. Chem. Eng. Data 11: 566 (1966).Google Scholar
  138. 131.
    B. L. Dunicz and R. C. Scheidt, J. Chem. Eng. Data 13: 220 (1968).Google Scholar
  139. 132.
    E. L. Freiling and M. H. Rowell, in: Ion Exchange (J. A. Marinsky, ed.), Vol. 2, pp. 43–88, Marcel Dekker, New York (1969).Google Scholar
  140. 133.
    N. P. Nies, J. Electrochem. Soc. 107: 817 (1960).Google Scholar
  141. 140.
    Z. P. Ershova and Yu. I. Olshanskii, Geochimiya (3): 257 (1957).Google Scholar
  142. 141.
    Yu. I. Olshanskii, Dokl. Akad. Nauk SSSR 70 (2): 246 (1950).Google Scholar
  143. 142.
    M. L. Pearce and J. F. Beisler, J. Amer. Ceram. Soc. 48: 40 (1965).Google Scholar
  144. 143.
    L. Hillert, Acta Chem. Scand. 19: 1516 (1965).Google Scholar
  145. 144.
    N. M. Sokolov, N. M. Tsindrik, and O. I. Dmitrevskaya, Zh. Obshch. Khim. 31: 1051 (1961).Google Scholar
  146. 145.
    N. M. Tsindrik and N. M. Sokolov, Zh. Obshch. Khim. 28: 1729 (1958).Google Scholar
  147. 146.
    G. G. Diogenov, Dokl. Akad. Nauk SSSR 78: 697 (1951).Google Scholar
  148. 147.
    G. G. Diogenov, Zh. Obshch. Khim. 23: 24 (1953).Google Scholar
  149. 148.
    Reference 3, pp. 432–437.Google Scholar
  150. 149.
    Reference 27, pp. 447–448.Google Scholar
  151. 150.
    M. Zangen, J. Phys. Chem. 69: 1835 (1965).Google Scholar
  152. 151.
    M. Zangen, J. Phys. Chem. 74, in press (1970).Google Scholar
  153. 152.
    M. Zangen, Inorg. Chem. 7: 133 (1968).Google Scholar
  154. 153.
    R. H. Wiswall, Jr., and J. J. Egan, Nucleonics 15 (7): 104 (1957).Google Scholar
  155. 154.
    F. J. Salzano and F. B. Hill, U.S.A.E.C. Rep. BNL-639, 19 pp. (1962).Google Scholar
  156. 155.
    O. F. Dwyer, Amer. Inst. Chem. Eng. J. 2: 163 (1956).Google Scholar
  157. 156.
    R. H. Wiswall, Jr., J. J. Egan, W. S. Ginell, F. T. Miles, and J. R. Powell, in: Proc. U. N. Conf. Peaceful Uses At. Energy, Geneva, 1958 17:421 (1958).Google Scholar
  158. 157.
    O. E. Dwyer, A. M. Eshaya, and F. S. Hill, in: Proc. U. N. Conf. Peaceful Uses At. Energy, Geneva, 1958 17:428, Geneva (1958).Google Scholar
  159. 158.
    J. A. Lane, H. G. MacPherson, and F. Maslan, eds., Fluid Fuel Reactors, Chap. 22, p. 791, Addison-Wesley, Reading (1958).Google Scholar
  160. 159.
    T. Miyauchi and M. Takata, Kagaku Kogaku 26:991 (1962) [in Japanese, cf. U.S.A. E.C. Rep. (trans.) ORNL-tr-1665, and Nucl. Sci. Abstr. 21:24093 (1967)].Google Scholar
  161. 160.
    R. J. Teitel, U. S. Patent (to Dow Chemical Co.) 3, 251–745 (1966).Google Scholar
  162. 161.
    I. N. Nichkov, S. P. Raspopin, and O. A. Ryzhik, Tr. Vses. Soveshch. Fiz. Khim. Rasplay. Solei, 2nd, Kiev 258 (1965).Google Scholar
  163. 162.
    H. A. Laitinen and W. S. Ferguson, quoted by C. H. Liu, K. E. Johnson and H. A. Laitinen, in: Molten Salt Chemistry ( M. Blander, ed.), p. 708, John Wiley (Inter-science), New York (1964).Google Scholar
  164. 163.
    Yu. K. Delimarskii and B. F. Markov, Electrochemistry of Fused Salts (A. Peiperl and R. Wood, transi.-eds.), pp. 297–330, Sigma Press, Washington, D. C. (1961).Google Scholar
  165. 164.
    N. Nachtrieb and M. Steinberg, J. Amer. Chem. Soc. 70: 2613 (1948).Google Scholar
  166. 165.
    M. Steinberg and N. Nachtrieb, J. Amer. Chem. Soc. 72: 3558 (1950).Google Scholar
  167. 166.
    E. Colichman, Anal. Chem. 27: 1559 (1955).Google Scholar
  168. 167.
    J. Randles and W. White, Z. Elektrochem. 59: 666 (1955).Google Scholar
  169. 168.
    J. H. Christie and R. A. Osteryoung, J. Amer. Chem. Soc. 82: 1841 (1960).Google Scholar
  170. 169.
    D. Inman and J. O’ M. Bockris, Trans. Faraday Soc. 57: 2308 (1961).Google Scholar
  171. 170.
    H. S. Swofford and H. A. Laitinen, J. Electrochem. Soc. 110: 814 (1963).Google Scholar
  172. 171.
    H. S. Swofford, Jr., and C. L. Holifield, Anal. Chem. 37:1509–1513 (1965).Google Scholar
  173. 172.
    D. Inman, D. G. Lovering, and R. Narayan, Trans. Faraday Soc. 63: 3017 (1967).Google Scholar
  174. 173.
    D. Inman and J. O. M. Bockris, J. Electrochem. Anal. 3: 126 (1962).Google Scholar
  175. 174.
    J. J. Egan. J. Phys. Chem. 65: 2222 (1961).Google Scholar
  176. 175.
    D. E. Ferguson, U.S.A.E.C. Rep. ORNL-4272 10–21 (1968) and ORNL-4422, 1–36 (1969).Google Scholar
  177. 176.
    W. R. Grimes, U.S.A.E.C. Rep. ORNL-3708 214–51 (1967).Google Scholar
  178. 177.
    W. R. Grimes, U.S.A.E.C. Rep. ORNL-4076 34–37 (1967).Google Scholar
  179. 178.
    W. R. Grimes, U.S.A.E.C. Rep. ORNL-4229 43–46 (1968).Google Scholar
  180. 179.
    Reference 3, pp. 551–558.Google Scholar
  181. 180.
    A. G. Kotlova, Yu. I. Olshanskii, and A. I. Tsvetkov, Tr. Inst. Geol. Rud. Mestorozhd. Petrog. Mineral. Geokhim. 42: 3 (1960).Google Scholar
  182. 181.
    B. Stalhane, Z. Elektrochem. 35:486 (1929)Google Scholar
  183. B. Stalhane, Z. Elektrochem. 36: 404 (1930).Google Scholar
  184. 182.
    Reference 129, quoted with three detailed figures in Freiling and Rowell, pp. 64–66.Google Scholar
  185. 183.
    C. E. Adams and J. T. Quan, J. Phys. Chem. 70: 331 (1966).Google Scholar
  186. 184.
    B. D. McSwain, N. F. Borelli, and G. J. Su, J. Phys. Chem. Glasses 4: 1 (1963).Google Scholar
  187. 185.
    C. F. Adams and J. T. Quan, J. Phys. Chem. 70: 340 (1966).Google Scholar
  188. 186.
    J. Krogh-Moe, J. Phys. Chem. Glasses 3: 101 (1962)Google Scholar
  189. J. Krogh-Moe, J. Phys. Chem. Glasse 6: 51 (1965).Google Scholar
  190. 187.
    A. H. Silver and P. J. Bray, J. Chem. Phys. 29: 984 (1958).Google Scholar
  191. 188.
    S. E. Svanson, E. Forslind, and J. Krogh-Moe, J. Phys. Chem. 66: 174 (1962).Google Scholar
  192. 189.
    J. Biscoe and B. Warren, J. Amer. Ceram. Soc. 21: 287 (1938).Google Scholar
  193. 190.
    B. Ottar and W. L. Ruigh, J. Phys. Chem. Glasses 3: 95 (1962).Google Scholar
  194. 191.
    J. Goubeau and H. Keller, Z. Anorg. Chem. 272: 303 (1953).Google Scholar
  195. 192.
    L. Shartsis, W. Capps, and S. Spinner, J. Amer. Ceram. Soc. 36: 35–319 (1953).Google Scholar
  196. 193.
    Y. Marcus, M. Liquornik, L. F. Friedman, and M. Zangen, Isr. A.E.C. Rep. IA-864 (1963).Google Scholar
  197. 194.
    M. Zangen, Isr. J. Chem. 2: 91 (1964).Google Scholar
  198. 195.
    M. Zangen and Y. Marcus, Isr. J. Chem. 2: 155 (1964).Google Scholar
  199. 196.
    Y. Marcus, I. Eliezer, and M. Zangen, Proc. Symp. Coord. Chem. Tihany, Hungary, 1964 (M. T. Beck, ed.), Akad. Kiado, Budapest (1965), p. 409.Google Scholar
  200. 197.
    M. Zangen, Inorg. Chem. 7: 138 (1968).Google Scholar
  201. 198.
    M. Zangen, J. Inorg. Nucl. Chem. 31: 867 (1969).Google Scholar
  202. 199.
    M. Zangen, in: Solvent Extraction Research ( A. S. Kertes and Y. Marcus, eds.), p. 151, John Wiley (Interscience), New York (1969).Google Scholar
  203. 200.
    M. Zangen, unpublished results (1963).Google Scholar
  204. 201.
    Y. Marcus and I. Eliezer, Coord. Chem. Rev. 4: 273 (1969).Google Scholar
  205. 202.
    C. Thomas and J. Braunstein, J. Phys. Chem. 68: 957 (1964).Google Scholar
  206. 203.
    J. Braunstein and A. S. Minano, Inorg. Chem. 5: 942 (1966).Google Scholar
  207. 204.
    S. C. Wait, Jr., A. T. Ward, and G. J. Janz, J. Chem. Phys. 45: 133 (1966).Google Scholar
  208. 205.
    J. Penciner, I. Eliezer, and Y. Marcus, J. Phys. Chem. 69: 2955 (1965).Google Scholar
  209. 206.
    Y. Marcus, Coord. Chem. Rev. 2: 215 (1967).Google Scholar
  210. 207.
    M. Zangen, in: Solvent Extraction Chemistry ( D. Dyrssem, J. O. Liljenzin, and J. Rydberg, eds.), p. 581, North-Holland, Amsterdam (1967).Google Scholar
  211. 208.
    M. Zangen, Inorg. Chem. 7: 1202 (1968).Google Scholar
  212. 209.
    M. Taube and Z. Borkowska, Nature 192: 745 (1961).Google Scholar
  213. 210.
    H. Gutmann and A. S. Kertes, J. Inorg. Nucl. Chem. 31: 205 (1969).Google Scholar
  214. 211.
    I. J. Gal. Inorg. Chem. 7: 1611 (1968).Google Scholar
  215. 212.
    J. M. C. Hess, J. Braunstein, and H. Braunstein, J. Inorg. Nucl. Chem. 26: 811 (1964).Google Scholar
  216. 213.
    M. Peleg, private communication.Google Scholar
  217. 214.
    R. M. Nikolic and I. J. Gal. J. Inorg. Nucl. Chem. 30: 1963 (1968).Google Scholar
  218. 215.
    I. J. Gal and R. M. Nikolic, in: Solvent Extraction Research ( A. S. Kertes and Y. Marcus, eds.), p. 211, John Wiley (Interscience), New York (1969).Google Scholar
  219. 216.
    G. Scibona, J. E. Byrum, K. Kimura, and J. W. Irvine, Jr., in: Solvent Extraction Chemistry ( D. Dyrssen, J. O. Liljenzin, and J. Rydberg, eds.), North-Holland, Amsterdam (1967), p. 398.Google Scholar
  220. 217.
    J. Braunstein and H. Braunstein, Inorg. Chem. 8: 1558 (1969).Google Scholar
  221. 218.
    H. Gutmann unpublished results, Hebrew University, Jerusalem, 1968–1969.Google Scholar
  222. 219.
    J. David, unpublished results, Soreq Nuclear Research Center, Yavne, 1968–1969.Google Scholar
  223. 220.
    J. David, M. Zangen, and A. S. Kertes, Isr. J. Chem. 5: 2p (1967).Google Scholar
  224. 221.
    J. David, M. Zangen, and A. S. Kertes, Isr. A.E.C. Rep. IA-1168, 96–99 (1968).Google Scholar
  225. 222.
    J. David and M. Zangen, in: Solvent Extraction Research ( A. S. Kertes and Y. Marcus, eds.), p. 219, John Wiley (Interscience), New York (1969).Google Scholar
  226. 223.
    D. E. McKenzie, W. L. Elsdon, and J. W. Fletcher, Can. J. Chem. 36: 1233 (1958).Google Scholar
  227. 224.
    R. C. Vogel, U.S.A.E.C. Rep. ANL-7175 (1967).Google Scholar
  228. 225.
    R. C. Vogel, U.S.A.E.C. Rep. ANL-7350 (1968).Google Scholar
  229. 226.
    J. B. Knighton, I. Johnson, and R. K. Steunenberg, U.S.A.E.C. Rep. ANL-7524 (1969).Google Scholar
  230. 227.
    Z. C. H. Tan, Ph. D. Thesis, Massachussetts Institute of Technology, Cambridge (1969).Google Scholar
  231. 228.
    S. Ahrland, Chem. Phys. Lett. 2: 303 (1968);Google Scholar
  232. Y. Marcus, unpublished results, 1970.Google Scholar
  233. 229.
    R. E. Thoma, H. Insley, H. A. Friedman, and G. M. Herbert, I. Nucl. Mater. 27: 166 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Yizhak Marcus
    • 1
  1. 1.Department of Inorganic and Analytical ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations