Advertisement

Enzymatic Degradation of Hypothalamic Hormones at the Pituitary-Cell Level: Possible Involvement in Regulation Mechanisms

  • Karl Bauer
Part of the Biochemical Endocrinology book series (BIOEND)

Abstract

Within the concert of regulatory mechanisms balancing the functions of an organism according to the needs of the body, there are principally two control levels. On one hand, the biological effect exerted by a given concentration of an active substance is dependent on the various physiological parameters that collectively determine the “responsiveness” of the target. On the other hand, the mechanisms regulating the hormone concentrations at physiologically appropriate levels are evidently of fundamental importance, since under given physiological conditions the physiological response is, within certain limits, directly correlated with the concentration of the biologically active substance that becomes effective at the target site. Among these mechanisms, the controlled inactivation of a biologically active substance is an eminently important event. This becomes evident in the case of certain pathological disorders in which loss of control over destruction might be the primary cause of certain endocrine diseases (Knight et al., 1973).

Keywords

Secretory Granule Pyroglutamic Acid Amino Acid Amide Hypothalamic Hormone Hypophyseal Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassin, R., and Utiger, R. D., 1972, Serum inactivation of the immunological and biological activity of TRH, Endocrinology 91: 657–667.PubMedCrossRefGoogle Scholar
  2. Bauer, K., 1976, Regulation of degradation of TRH by thyroid hormones, Nature (London) 259: 591–593.CrossRefGoogle Scholar
  3. Bauer, K., Graf, K. J., Faivre-Baumann, A., Beier, S., Tixier-Vidal, A., and Kleinkauf, H., 1978, Inhibition of prolactin secretion by histidyl-proline diketopiperazine, Nature 274: 174–175.PubMedCrossRefGoogle Scholar
  4. Bauer, K., Horsthemke, B., Knisatschek, H., Nowak, P., and Kleinkauf, H., 1979, Degradation of luliberin (LH-RF) by brain and pituitary enzymes, Hoppe Seyler’s Z. Physiol. Chem. 360: 229.CrossRefGoogle Scholar
  5. Bournaud, F., Gourdji, D., Mongongu, S., and Tixier-Vidal, A., 1977, [3H]-Thyroliberin (TRH) binding to nuclei isolated from a pituitary clonal cell line (GH3), Neuroendo-crinology 24: 183–194.CrossRefGoogle Scholar
  6. Farquhar, M. G., 1969, Lysosome function in regulating secretion: Disposal of secretory granules in cells of the anterior pituitary gland, in: Lysosome s in Biology and Pathology (J. T. Dingle and H. B. Fell, eds.), Vol. 2, pp. 462–482, North-Holland, Amsterdam.Google Scholar
  7. Farquhar, M.G., 1971, Processing of secretory products by cells of the anterior pituitary gland, Mem. Soc. Endocrinol. 19: 79–122.Google Scholar
  8. Heber, D., and Odell, W. D., 1978, Pituitary receptor binding activity of active, inactive, superactive and inhibitory analogs of gonadotropin-releasing hormone, Biochem. Biophys. Res. Comm. 82: 67–73.PubMedCrossRefGoogle Scholar
  9. Hopsu-Havu, V. K., and Sarimo, S. R., 1967, Purification and characterization of an aminopeptidase hydrolyzingglycly-proline-β-naphthyl-amide, Hoppe-Seyler’s Z. Physiol. Chem. 348: 1540–1550.PubMedCrossRefGoogle Scholar
  10. Hudson, D., Pickering, A., McLoughlin, J. L., Matthews, E., Sharpe, R., Fink, G., Mclntyre, I., and Szelke, M., 1976, The synthesis and metabolic fate of 3-[3H]Trp, 9-[14C]Pro-LHRH, VI International Congress of Endocrinology, Hamburg, Abstract No.43.Google Scholar
  11. Jeffcoate, S. L., 1977, The hormonal peptides of the hypothalamus, in: Topics in Hormone Chemistry (W. R. Butt, ed.), Vol. 1, pp. 13–47, Ellis Horwood, Chichester, New York, Brisbane, and Toronto.Google Scholar
  12. Jeffcoate, S. L., and White, N., 1974, The inactivation of thyrotropin releasing hormone by plasma in thyroid disease, Clin. Endocrinol. 4: 231.CrossRefGoogle Scholar
  13. Knight, E. B., Baylin, S. B., and Foster, G. V., 1973, Control of polypeptide hormones by enzymatic degradation, Lancet 2: 719–723.CrossRefGoogle Scholar
  14. Knisatschek, H., and Bauer, K., 1978, Deamidation of thyroliberin (TRF) by a post-proline cleaving endopeptidase, /2th FEBS Meeting, Dresden, Abstract No. 2819.Google Scholar
  15. Knisatschek, H., Bauer, K., and Kleinkauf, H., 1979, Characterization of thyroliberin deamidating enzyme as a post proline cleaving enzyme, Hoppe Seyler’s Z. Physiol. Chem. 360: 303–304.Google Scholar
  16. Koch, Y., Baram, T., Chobsieng, P., and Fridkin, M., 1974, Enzymic degradation of luteinizing hormone-releasing hormone (LH-RH) by hypothalamic tissue. Biochem. Biophys. Res. Commun. 61: 95–103.PubMedCrossRefGoogle Scholar
  17. Kochmann, K., Kerdelhué, B., Zor, U., and Jutisz, M., 1975, Studies of enzymatic degradation of luteinizing hormone-releasing hormone by different tissues, FEBS Lett. 50: 190–194.CrossRefGoogle Scholar
  18. Koida, M., and Walter, R., 1976, Post-proline cleaving enzyme, J. Biol. Chem. 251: 7593–7599.PubMedGoogle Scholar
  19. Marks, N., 1978, Biotransformation and degradation of corticotropins, lipotropins and hypothalamic peptides, in: Frontiers in Neuroendocrinology (W. F. Ganong and L. Martini, eds.), Vol. 5, pp. 329–377, Raven Press, New York.Google Scholar
  20. Marks, N., and Stern, F., 1974, Enzymatic mechanisms for the inactivation of luteinizing hormone-releasing hormone (LH-RH), Biochem. Biophys. Res. Commun. 61: 1458–1463.PubMedCrossRefGoogle Scholar
  21. Marks, N., and Stern, F., 1975, Inactivation of somatostatin (GH-RIH) and its analogs by crude and partially purified rat brain extracts, FEBS Lett. 55: 220–224.PubMedCrossRefGoogle Scholar
  22. Maroux, S., Baratti, J., and Desnuelle, P., 1971, Purification and specificity of porcine entereokinase, J. Biol. Chem. 246: 5031–5039.PubMedGoogle Scholar
  23. McDonald, J. K., Callahan, P. X., Ellis, S., and Smith, R. E., 1971, Polypeptide degradation by dipepddyl aminopeptidase I (cathepsin C) and related peptidases, in: Tissue Proteinases (A. J. Barrett and J. T. Dingle, eds.), pp. 69–107, North-Holland, Amsterdam.Google Scholar
  24. Meyer, R., and Clifton, K., 1956, Effect of diethyl stilbestrol on the quantity and intracellular distribution of pituitary proteinase activity, Arch. Biochem. Biophys. 62: 198–209.PubMedCrossRefGoogle Scholar
  25. Mudge, A. W., and Fellows, R. E., 1973, Bovine pituitary pyrrolidone-carboxyl peptidase, Endocrinology 93: 1428–1434.PubMedCrossRefGoogle Scholar
  26. Neurath, H., and Walsh, K. A., 1976, Role of proteolytic enzymes in biological regulation (a review), Proc. Natl. Acad. Sci. U.S.A. 73: 3825–3832.PubMedCrossRefGoogle Scholar
  27. Perdue, J. F., and McShan, W. H., 1962, Isolation and biochemical study of secretory granules from rat pituitary glands, J. Cell Biol. 15: 159–172.PubMedCrossRefGoogle Scholar
  28. Prasad, C., Matsui, T., and Peterkofsky, A., 1977, Antagonism of ethanol narcosis by histidyl-proline diketopiperazine, Nature (London) 268: 142–144.CrossRefGoogle Scholar
  29. Redding, T. W., and Sehally, A. V. 1969, Studies on the thyrotropin-releasing hormone (TRH): Activity in peripheral blood, Proc. Soc. Exp. Biol. Med. 131: 420–425.PubMedGoogle Scholar
  30. Rydon, N. H., and Smith, P. W. G., 1956, Polypeptides: The self condensation of the esters of some peptides of glycine and proline, J. Chem. Soc. 1956: 3642–3650.CrossRefGoogle Scholar
  31. Smith, R. E., and Farquhar, M. G., 1966, Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland, J. Cell Biol. 31: 319–347.PubMedCrossRefGoogle Scholar
  32. Sternberger, L. A., and Petrali, J. P., 1975, Quantitative immunocytochemistry of pituitary receptors for luteinizing hormone-releasing hormone, Cell Tissue Res. 162: 141–176.PubMedCrossRefGoogle Scholar
  33. Szewczuk, A., and Kwiatkowska, J., 1970, Pyrrolidonyl peptidase in animal, plant and human tissues, Eur. J. Biochem. 15: 92–96.PubMedCrossRefGoogle Scholar
  34. Tesar, J. T., Koenig, H., and Hughes, C., 1969, Hormone storage granules in the beef anterior pituitary, J. Cell. Biol. 40: 225–235.PubMedCrossRefGoogle Scholar
  35. Van der Werf, P., Orlowski, M., and Meister, A., 1971, Enzymic conversion of 5-OXO-L-proline (L-pyrrolidone carboxylate) to L-glutamate coupled with cleavage of adenosine-triphosphate to adenosine-diphosphate, a reaction in gamma-glutamyl cycle, Proc. Natl. Acad. Sci. U.S.A. 68: 2982–2985.PubMedCrossRefGoogle Scholar
  36. Vanha-Pertulla, T., 1969, Aminoacyl and dipeptidyl arylamidases (aminopeptidases) of the pituitary gland related to function, Endocrinology 85: 1062–1069.CrossRefGoogle Scholar
  37. Walter, R., Shlank, H., Glass, J. D., Schwartz, I. L., and Kerenyl, T. D., 1971, Leucylglycineamide released from oxytocin by human uterine enzyme, Science 173: 827–829.PubMedCrossRefGoogle Scholar
  38. White, N., Jeffcoate, S. L., Griffiths, E. C., and Hooper, K. C., 1976, Effect of thyroid hormone-degrading activity of rat serum, J. Endocrinol. 71: 1–7.CrossRefGoogle Scholar
  39. Yoshimoto, T., Fischl, M., Orlowski, R. C., and Walter, R., 1978, Post-proline cleaving enzyme and post-proline dipeptidyl aminopeptidase, J. Biol. Chem. 253: 3708–3716.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Karl Bauer
    • 1
  1. 1.Max-Volmer-Institut, Abteilung BiochemieTechnische Universität BerlinBerlin 10Germany

Personalised recommendations