Development of a Photoaffinity Probe for Adrenocorticotropin Receptors

  • J. Ramachandran
  • Eleanor Canova-Davis
  • Catherine Behrens
Part of the Biochemical Endocrinology book series (BIOEND)


Despite the enormous interest in the study of polypeptide hormone receptors, progress has been slow owing to the extremely small concentrations of receptors in target tissues. While some significant progress has been made in the case of peptide hormones that are acidic in character, such as human chorionic gonadotropin (Dufau et al., 1975) and prolactin(Shiu and Friesen, 1974), the identification of the specific receptors of the basic polypeptide hormones has proved to be much more difficult. Peptide hormones, especially those with isoelectric points above pH 8 [e.g., adrenocorticotropin (ACTH), melanocyte-stimulating hormone (MSH), glucagon], display a strong tendency to bind to a variety of inert materials as well as nonreceptor components of the target tissue. Since such binding appears specific by the criteria generally employed to define receptors and since the number of such nonreceptor sites greatly exceeds that of specific receptors (Cuatrecasas et al., 1975), the task of detecting and characterizing the physiologically relevant receptor is a formidable one. Fractiona-tion of the plasma-membrane components of the target cell on the basis of binding of the radioactive hormone may result in the isolation of nonreceptor components that may display high affinity for the hormone. Other approaches to the identification of the specific receptor are therefore necessary.


ACTH Receptor Photoaffinity Label High Specific Radioactivity Sulfenyl Chloride Single Tryptophan Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, G. F.-L., 1974, Resolution of bacterial proteins by polyacrylamide gel electropho-resis on slabs, 7. Biol. Chem. 249: 634.Google Scholar
  2. Bayley, H., and Knowles, J. R., 1977, Photoaffinity labeling, Methods Enzymol. 46: 69.PubMedCrossRefGoogle Scholar
  3. Brundish, D. E., and Wade, R., 1973, Synthesis of [3,5-3H2-Tyr23]-α-corticotropin-(l-24)-tetracosapeptide, J. Chem. Soc. Perkin Trans. 1 1973: 2875.CrossRefGoogle Scholar
  4. Canova-Davis, E., and Ramachandran, J., 1976, Chemical modification of the tryptophan residue in adrenocorticotropin, Biochemistry 15: 921.PubMedCrossRefGoogle Scholar
  5. Cuatrecasas, P., Hollenberg, M. D., Chang, K.-J., and Bennett, V., 1975, Hormone receptor complexes and their modulation of membrane function, Recent. Prog. Horm. Res. 31: 37.PubMedGoogle Scholar
  6. Das, M., Miyakawa, T., Fox, D. F., Pruss, R. M., Aharonov, A., and Herschman, H. R., 1977, Specific radiolabeling of cell surface receptor for epidermal growth factor, Proc. Natl. Acad. Sci. U.S.A. 74: 2790.PubMedCrossRefGoogle Scholar
  7. Dufau, M. L., Ryan, D. W., Baukal, A. J., Catt, K. J., 1975, Gonadotropin receptors, J. Biol. Chem. 250: 4822.PubMedGoogle Scholar
  8. Greenwood, F. C., Hunter, W. M., and Glover, J. S., 1963, the preparation of 131I-labelled human growth hormone of high specific radioactivity, Biochem. J. 89: 114.PubMedGoogle Scholar
  9. Harwood, J. P., Lów, H., and Rodbell, M., 1973, Stimulatory and inhibitory effects of guanyl nucleotides on fat cell adenylate cyclase, J. Biol. Chem. 248: 6239.PubMedGoogle Scholar
  10. Ji, T. H., 1977, A novel approach to the identification of surface receptors, J. Biol. Chem. 252: 1566.PubMedGoogle Scholar
  11. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature (London) 227: 680.CrossRefGoogle Scholar
  12. Landon, J., Livanou, T., and Greenwood, F. C., 1967, the preparation and immunological properties of 131I-labelled adrenocorticotropin, Biochem. J. 105: 1075.PubMedGoogle Scholar
  13. Lang, U., Karlaganis, G., Vogel, R., and Schwyzer, R., 1974, Hormone-receptor interactions: Adrenocorticotropic hormone binding site increase in isolated fat cells by phenoxazones, Biochemistry 13: 2626.PubMedCrossRefGoogle Scholar
  14. Lefkowitz, R., Roth, J., Pricer, W., and Pastan, I., 1970, ACTH receptors in the adrenal: Specific binding of ACTH-125I and its relation to adenyl cyclase, Proc. Natl. Acad. Sci. U.S.A. 65: 745.PubMedCrossRefGoogle Scholar
  15. Lemaire, S., Yamashiro, D., Behrens, C., and Li, C. H., 1977, Adrenocorticotropin. 51. Synthesis and properties of analogues of the human hormone with tyrosine residues replaced by 3,5-diiodotyrosine, J. Am. Chem. Soc. 99: 1577.PubMedCrossRefGoogle Scholar
  16. Levy, D., 1973, Preparation of photoaffinity probes for the insulin receptor site in adipose and liver cell membranes, Biochim. Biophys. Acta 322: 329.PubMedCrossRefGoogle Scholar
  17. Lowry, P. J., McMartin, C., and Peters, J., 1973, Properties of a simplified bioassay for adrenocorticotropic activity using the steriodogenic response of isolated adrenal cells, J. Endocrinol. 59: 43.PubMedCrossRefGoogle Scholar
  18. Mcllhinney, R. A. J., and Schulster, D., 1974, Preparation of biologically active 125I-labelled ACTH by a simple enzymic radioiodination utilizing lactoperoxidase, Endocrinology 94: 1259.CrossRefGoogle Scholar
  19. Mcllhinney, R. A. J., and Schulster, D., 1975, Studies on the binding of 125I-labeled corticotropin to isolated rat adrenocortical cells, J. Endocrinol. 64: 175.CrossRefGoogle Scholar
  20. Morgat, J. L., Hung, L. T., Candinaud, R., Fromageot, P., Bockaert, J., Imbert, M., and Morel, F., 1970a, Peptidic hormone interactions at the molecular level: Preparation of highly labelled 3H oxytocin, J. Labelled Compd. 6: 276.CrossRefGoogle Scholar
  21. Morgat, J. L., Hung, L. T., and Fromageot, P., 1970b, Preparation of highly labelled [3H] angiotensin II, Biochim. Biophys. Acta 207: 374.PubMedCrossRefGoogle Scholar
  22. Moyle, W. R., Kong, Y.-C, and Ramachandran, J., 1973, Steriodogenesis and cyclic adenosine 3‱,5′-monophosphate accumulation in isolated rat adrenal cells, J. Biol. Chem. 248: 2409.PubMedGoogle Scholar
  23. Ontjes, D., Kirkways, D., Mahaffee, D. D., Zimmerman, C. F., and Gwynne, J. T., 1977, ACTH receptors and the effect of ACTH on adrenal organelles, Ann. N. Y. Acad. Sci. 297: 295.PubMedCrossRefGoogle Scholar
  24. Pardelles, P., Morgat, J. L., Fromageot, P., Camier, M., Bonne, D., Cohen, P., Bockaert, J., and Jard, S., 1972, Tritium labelling of 8-lysine vasopressin and its purification by affinity chromatography on sepharose bound neurophysins, FEBS Lett. 26: 189.CrossRefGoogle Scholar
  25. Rae, P., and Schimmer, B. P., 1974, Iodinated derivatives of adrenocorticotropic hormone, J. Biol. Chem. 249: 5649.PubMedGoogle Scholar
  26. Ramachandran, J., 1973, Structure and function of adrenocorticotropin, in: Hormonal Proteins and Peptides (C. H. Li, ed.), Vol. II, pp. 1–28, Academic Press, New York.Google Scholar
  27. Ramachandran, J., and Behrens, C., 1977, Preparation and characterization of specifically tritiated ACTH, Biochim. Biophys. Ada 496: 321.CrossRefGoogle Scholar
  28. Ramachandran, J., and Canova-Davis, E., 1977, Synthesis and use of photoreactive arylsulfenyl chlorides, in: Peptides-Proceedings of the Fifth American Peptide Symposium (M. Goodman and J. Meienhofer, eds.), pp. 553–555, Wiley, New York.Google Scholar
  29. Ramachandran, J., and Lee, V., 1970a, Preparation and properties of the o-nitrophenyl-sulfenyl derivative of ACTH: An inhibitor of the libpolytic action of the hormone, Biochem. Biophys. Res. Commun. 38: 507.PubMedCrossRefGoogle Scholar
  30. Ramachandran, J., and Lee, V., 1970b, Divergent effects of o-nitrophenyl sulfenyl ACTH on rat and rabbit fat cell adenyl cyclases, Biochem. Biophys. Res. Commun. 41: 358.PubMedCrossRefGoogle Scholar
  31. Ramachandran, J., and Lee, V., 1976, Divergent effects of adrenocorticotropin and melanotropin on isolated rat and rabbit adipocytes, Biochim. Biophys. Acta 428: 339.PubMedCrossRefGoogle Scholar
  32. Ramachandran, J., Kong, Y. C., and Liles, S., 1976, Effects of ACTH and its o-nitrophenyl sulfenyl derivative on adrenocortical function in vivo, Acta Endocrinol. 82: 587.PubMedGoogle Scholar
  33. Rees, L. H., Cooke, D. M., Kendall, J. W., Allen, C. F., Kramer, R. M., Ratcliffe, J. G., and Knight, R. A., 1971, A radioimmunoassay for rat plasma ACTH, Endocrinology 89: 254.PubMedCrossRefGoogle Scholar
  34. Richardson, U. I., 1978, Self-regulation of adrenocorticotropic secretion by mouse pituitary tumor cells in culture, Endocrinology 102: 910.PubMedCrossRefGoogle Scholar
  35. Shiu, R. P. C., and Friesen, H. G., 1974, Solubilization and purification of a prolactin receptor from the rabbit mammary gland, J. Biol. Chem. 249: 7902.PubMedGoogle Scholar
  36. Wilchek, M., and Miron, T., 1972, The conversion of tryptophan to 2-thioltryptophan in peptides and proteins, Biochem. Biophys. Res. Commun. 47: 1015.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • J. Ramachandran
    • 1
  • Eleanor Canova-Davis
    • 1
  • Catherine Behrens
    • 1
  1. 1.Hormone Research LaboratoryUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations