Hamster Scrapie: Evidence for Alterations in Serotonin Metabolism

  • Robert G. Rohwer
  • Jaap Goudsmit
  • Leonard M. Neckers
  • D. Carleton Gajdusek
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 134)


The subacute spongiform virus encephalopathies—scrapie, transmissible mink encephalopathy, kuru and Creutzfeldt-Jakob Disease—are central nervous system disorders characterized histopathologically by neuronal loss, vacuolation of neuron processes, and glial hypertrophy (1). Clinical disease appears only after the production of high titers of virus in the brain itself (2). Significant reductions in brain choline acetyltransferase activities have been reported during the late stages of clinical disease caused by several strains of mouse scrapie (3), thus suggesting a disturbance in the cholinergic nervous system. We have investigated the involvement of serotonergic neurons by comparing the effects of a serotonin precursor and an agonist on the behavior of scrapie-infected and control hamsters and by measurement of brain serotonin (L-5-hydroxytryptamine) concentrations in both groups. We have also compared blood serotonin concentrations in infected and control animals.


Brain Serotonin Serotonin Concentration Normal Hamster Infected Hamster Blood Serotonin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lampert, P.W. et al. Am J Pathol 68 (1972) 626.PubMedGoogle Scholar
  2. 2.
    Eklund, C.M. et al. J Infect Dis 117 (1967) 15.PubMedCrossRefGoogle Scholar
  3. 3.
    McDermott, F.R. et al. Lancet ii (1978) 318.CrossRefGoogle Scholar
  4. 4.
    Kimberlin, R.H.; Walker, CA. J Gen Virol 37 (1977) 295.CrossRefGoogle Scholar
  5. 5.
    Hong, E. et al. Eur J Pharmacol 6 (1969) 274.PubMedCrossRefGoogle Scholar
  6. 6.
    Kuhn, D.M.; Appel, J.B. Neurosci Abstr 1 (1975) 293.Google Scholar
  7. 7.
    Sloviter, R.S. et al. J Pharmacol Exp Ther 206 (1978) 339.PubMedGoogle Scholar
  8. 8.
    Trulson, M.E. et al. J Pharmacol Exp Ther 198 (1976) 23.PubMedGoogle Scholar
  9. 9.
    Grahame-Smith, D.G. J Neurochem 18 (1971) 1053.PubMedCrossRefGoogle Scholar
  10. 10.
    Jacobs, B.L. Life Sci 19 (1976) 777.PubMedCrossRefGoogle Scholar
  11. 11.
    Johnson, S.M.; Bolstad, O.D. In: Behavior Change—Methodology, Concepts and Practice, ed. Hamerlynck, Handy, and Mash. Research Press, Champaign, Ill. (1973) 7.Google Scholar
  12. 12.
    Chang, C.C. Int J Neuropharmacol 3 (1964) 643.PubMedCrossRefGoogle Scholar
  13. 13.
    Maickel, R.P. et al. Int J Neuropharmacol 7 (1968) 275.PubMedCrossRefGoogle Scholar
  14. 14.
    Neckers, L.M.; Meek, J.L. Life Sci 19 (1976) 1579.PubMedCrossRefGoogle Scholar
  15. 15.
    DeLisi, L.E. et al. Arch Psychiatr (1980) in press.Google Scholar
  16. 16.
    Colquhoun, D. Lectures on Biostatics. Oxford University Press, Oxford (1971) 344.Google Scholar
  17. 17.
    Jacobs, B.L.; Klemfuss, H. Brain Res 100 (1975) 450.PubMedCrossRefGoogle Scholar
  18. 18.
    Neckers, L.M. et al. The Pharmacologist 21 (1979) abstract 266.Google Scholar
  19. 19.
    Undenfriend, S.; Weissbach, H. Fed Proc 13 (1954) 412.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Robert G. Rohwer
    • 1
    • 2
  • Jaap Goudsmit
    • 1
    • 2
  • Leonard M. Neckers
    • 1
    • 2
  • D. Carleton Gajdusek
    • 1
    • 2
  1. 1.National Institute of Neurological and Communicative Disorders and Stroke, Laboratory of Central Nervous System StudiesNational Institutes of HealthBethesdaUSA
  2. 2.National Institute of Mental Health, Laboratory of Clinical PharmacologyNational Institutes of Health, St. Elizabeths HospitalUSA

Personalised recommendations